
Developing a Model of Cognitive Lockup for User Interface Engineering

Tina Mioch (Tina.Mioch@tno.nl)

1

Rosemarijn Looije (Rosemarijn.Looije@tno.nl)
1

Mark Neerincx (Mark.Neerincx@tno.nl)
1,2

1
TNO Human Factors, P.O. Box 23

3769 ZG Soesterberg, The Netherlands

2
Delft University of Technology Man–Machine Interaction Group,

 Mekelweg 4, 2628 CD, Delft, The Netherlands

Abstract

This paper presents the development of a cognitive model of
cognitive lockup: the tendency of humans to deal with
disturbances sequentially, possibly overseeing crucial data
from unattended resources so that serious task failures can
appear—e.g., in a cockpit or control centre. The proposed
model should support the design and evaluation of user
interfaces that prevent such failures, being used outside the
academic community. Based on the practical cognitive task
load theory of Neerincx (2003), this model distinguishes time
pressure and number of tasks-to-do as two factors that
increase task switch costs and the corresponding risk of
cognitive lock-up. The CASCaS architecture proved to fit best
with the requirements to incorporate these factors and to
support the UI engineering process.

Keywords: cognitive lockup; cognitive modeling; cognitive
task load model; cognitive architectures; user interface
engineering.

Introduction

Aircraft pilots are faced with a complex traffic environment.

Cockpit automation and support systems help to reduce this

complexity. Currently, a lot of research is done to improve

the onboard management of flight trajectories and the

negotiation of trajectory changes with Air Traffic Control.

During the flight, many factors may induce changes to the

original flight plan, e.g. bad weather, traffic conflicts, or

runway changes. Safe operation of aircrafts is based on

normative flight procedures (standard operating procedures)

and rules of good airmanship, which we will refer to as

normative activities. We define pilot errors as deviations

from normative activities.

In the past, several cognitive explanations and theories

have been proposed to understand why pilots deviate from

normative activities (e.g. Dekker (2003)). The European

project HUMAN, in which the research described in this

paper is done, strives to pave a way of making this

knowledge readily available to designers of new cockpit

systems. We intend to achieve this by means of a valid

executable flight crew model which incorporates cognitive

error-producing mechanisms leading to deviations from

normative activities. The model interacts with models of

cockpit systems in a virtual simulation environment to

predict deviations and its potential consequences on the

safety of flight. The ultimate objective of HUMAN is to

apply this model to analyze human errors and support error

prediction in ways that are usable and practical for human-

centered design of systems operating in complex cockpit

environments.

At the initial stage of HUMAN we performed

questionnaire interviews with pilots and human factor

experts based on a literature survey of error-producing

mechanisms. We identified cognitive lockup to be among

the most relevant mechanisms for modern and future

cockpit human machine interfaces. We take the definition of

cognitive lockup from Moray and Rotenberg (1989) who

define the term ‘cognitive lockup’ as the tendency of

operators to deal with disturbances sequentially. This has as

a result that operators focus on a subpart of a system and

ignore the rest of it (Meij, 2004).

In this paper, we discuss factors that can cause cognitive

lockup and an architecture of a cognitive model that can be

used to help prevent lockup failures during User Interface

engineering.

Cognitive Lockup

Previous Research

As the definition from Moray and Rotenberg (1989) shows,

cognitive lockup does not occur when people can perform

all their tasks consecutively. Therefore they designed a task

where this was not possible. Participants were asked to

supervise a simulated thermal hydraulic system that

consisted of four subsystems. In one scenario they needed

only to focus on one fault in one of the subsystems. In

another scenario a first fault was followed by a second fault

in a different subsystem, which occurred before the

participant could have handled the first fault. It was shown

that participants shifted attention much later to the second

fault then they did to the first fault. Moray and Rotenberg

attributed this to limited information processing capacities.

In another study that demonstrated cognitive lockup

(Kerstholt et al, 1996), participants had to supervise four

dynamic subsystems and deal with disturbances. The system

included the option to stabilize a subsystem in which

additional faults occurred, with which participants

acknowledged their understanding of the development of a

157

disturbance over time. Most participants did not use this

option and handled the disturbances sequentially.

Cognitive lockup as a phenomenon is related to the rise of

automation, but the tendency to proceed with the current

task is not new. Meij (2004) investigated cognitive lockup

in relation to planning, task-switching and decision making.

He found that both prior investments into a task as the time

that is needed to complete the task increases the probability

of cognitive lockup. No support was found for refrainment

of monitoring (a second fire was detected, but not tended to

before the first fire was solved), too optimistic scenarios,

and lack of resources (the complexity of the first task did

not influence the degree of cognitive lockup).

Cognitive Task Load Model

A model that specifies core aspects of cognitive lockup is

the cognitive task load (CTL) model of Neerincx (2003).

The development of this model is driven by the need for

limited and practical theories and models on human

cognition to take validation of the theories and models out

the laboratory and into the real world, where the

environment is more dynamic.

The CTL-model describes load in terms of three

behavioral factors: time pressure, level of information

processing and number of task set switches (see Figure 1).

Time Pressure The time pressure is dependent on the

scenario and the actions of tasks. The scenario provides

information on the number of tasks due to events and the

actions that are called upon by the tasks can take a long or a

short time to handle. A standard measure for the time

pressure is:

Time pressure = time required for tasks

time available for tasks

Humans reach overload when the time pressure is more

than 70-80% (Beevis et al., 1994).

Figure 1: CTL model, with the three dimensions task set

switches, level of information processing, and time occupied

(time pressure).

Level of Information Processing The level of information

processing factor is measured as the percentage of

knowledge-based actions using the Skill-Rule-Knowledge

framework from Rasmussen (1986). Input information that

can be processed at skill level (e.g. when you touch

something hot with your hand, you immediately react by

removing your hand from the heat source) is not cognitively

demanding. When input information triggers a routine

consisting of rules (i.e. procedures with rules of the type "if

<event/state> then <actions>") it takes some cognitive

capacities to resolve the if/then, but the rest of the procedure

is quite automatic. Cognitive demanding are the situations

where there is problem analysis needed on the input

information and knowledge to reason about it, this can have

a large influence on the working memory.

Rasmussen’s framework corresponds to the cognitive

theory of skill acquisition of Anderson (1982) that

distinguishes three memory representations: cognitive,

associative and autonomous. These three levels are linked to

different memory representations; declarative, procedural

and implicit.

Task Set Switches To take into account situations where

people have to perform different tasks that appeal to

different sources of human knowledge and different objects

in the environment, the CTL-model comprises the task set

switches factor. A task set contains both the human

resources and environmental objects with momentary states,

which are involved in the task performance. A switch occurs

when the applicable task knowledge on the operating and

environment level change. A task set can thus be seen as a

goal that is comprised of several (sub-)tasks.

Rubinstein, Meyer and Evans (2001) distinguish two

types of task switching: task switching in successive tasks

and task switching in concurrent tasks. With successive

tasks the first task is responded to and finished before the

second task is presented. Concurrent tasks on the other hand

are tasks where the second task is presented before the first

task has been finished. We are only interested in concurrent

tasks, because a pilot usually has multiple concurrent tasks

that can be executed, e.g. monitoring different interfaces in

the cockpit. Successive task switching studies show that

task switching takes time (Jersild, 1927, Rogers & Monsell,

1995). In concurrent task switching studies (De Jong, 1995;

Schumacher et al., 1999), it is observed that people are

unable to deal with multiple tasks. They postpone the

second task until the first task is completed. In these

experiments the second task is not of such importance that it

should be handled immediately, but in real life situations not

handling the second task before finishing the first can cause

life threatening situations (e.g. the crash of flight 401 of

Eastern Air Lines in 1972 (NTSB, 1973)). Tasks can be

interrupted, but with every switch time and effort is needed

to do context acquisition to bring the environment

information up-to-date (Olsen & Goodrich, 2003).

In the CTL-model, the task set switches can be seen as the

number of task set switches possible at a particular moment

158

in time. This number comes thus forth from the environment

and the situation a person is in.

Cognitive Lockup in the CTL Model The three factors of

the CTL model are interrelated (Figure 1). Cognitive lockup

is independent of information processing level, but does

occur when both time pressure and number of task set

switches is high. That the information of processing level is

not of importance seems counterintuitive, but in an

experiment of Meij (2004) (experiment 2) this is supported.

In the experiment of Meij, participants were asked to

monitor for fires on a ship. When a fire was detected it had

to be diagnosed on both priority and treatment. Two fires

could exist simultaneously and the participant had to decide

which fire to fight. The complexity of this task was varied

by making the diagnosis of priority and treatment harder

and by varying the moment of introduction of the second

fire (e.g. after diagnosis of the first fire or during diagnosis).

The data showed that an increasing level of complexity had

no influence on when the second fire was detected.

Pilots and Cognitive Lockup

The most famous example of cognitive lockup comes from

the aviation domain. In 1972 a plane from Eastern Air

Lines, flight 401, crashes. During the landing the pilot is

warned about a problem with the landing gear. He cancels

the landing and sets the plane in autopilot so that he can

solve the problem. Unfortunately, due to his occupancy with

the landing gear, the pilot missed the warning signals

(alarms and air-traffic control) about decreasing altitude,

and the plane crashed (NTSB, 1973).

Modeling of Cognitive Lockup

Cognitive Architecture

Cognitive architectures were established in the early eighties

as research tools to unify psychological models of particular

cognitive processes (Newell, 1994). These early models

only dealt with laboratory tasks in non-dynamic

environments (Anderson, 1993; Newell, Rosenbloom, &

Laird, 1989). Furthermore, they neglected processes such as

multitasking, perception and motor control that are essential

for predicting human interaction with complex systems in

highly dynamic environments like the air traffic

environment addressed in HUMAN with the AFMS target

system. Models such as ACT-R and SOAR have been

extended in this direction (Anderson et al., 2004; Wray &

Jones, 2005) but still have their main focus on processes

suitable for static, non-interruptive environments. Below we

provide a short overview of the requirements we have for

the cognitive model and how these requirements are met by

ACT-R 6.1.4, SOAR 9.3.0 and EPIC. Note that we evaluate

the requirements only for these versions. ACT-R and SOAR

are under constant development and requirements that are

not met at the moment might be met in future versions.

The first requirement is that the cognitive model should

support multitasking. The three best known cognitive

architectures all support a form of multitasking; ACT-R

with threading (e.g. Salvucci & Taatgen, 2008), to SOAR

(Newell, Rosenbloom, & Laird, 1989) and EPIC (Meyer &

Kieras, 1997) it is inherent to the architecture. Secondly,

because we want to test interfaces there is a need for

perception and motor action abilities. This is inherent to

EPIC (Meyer & Kieras, 1997), ACT-R is able to do this

since ACT-R/PM (Byrne, 2001), and SOAR cannot do this

without coupling with EPIC, although since SOAR 9 there

is a vision module (Laird, 2008). All three need interface

coupling with a model of the interface (e.g. developed with

SegMan (Amant et al., 2005)). Thirdly, the model should be

able to learn, SOAR and ACT-R are able to learn, but EPIC

is not. Fourthly, we want an explicit Skills-Rules-

Knowledge separation (Rasmussen, 1983) to make it easier

for users to choose a level on which they want to work and

to make it more clear for end users where errors came from.

When it is from rules (procedures), adapting procedures can

be a solution, when it comes from the knowledge level the

solution can be more difficult, because the problems that

arise from this level are inherent to people. Finally, it is very

important that non-expert users can use the cognitive model

in the design and testing process of interfaces. With none of

the three discussed cognitive architectures this is possible,

because they all require a high level of knowledge of the

model, in addition to programming skills, before being able

to adapt them to a certain domain or interface.

In the following, we describe shortly the architecture used

in the HUMAN project. We choose to describe the

architecture to show that our theory of cognitive lockup is

embedded in a broader concept. However, this description

will only be short and will not go into (implementation)

details, as for the theory of cognitive lockup, these details

are not necessary.

The cognitive architecture CASCaS (Cognitive

Architecture for Safety Critical Task Simulation) is used to

model the cognitive process described in the previous

section. For a more detailed description of the CASCaS

architecture see Lüdtke et al. (2009). CASCaS has

multitasking abilities, has a perception and motor module, is

able to learn (e.g. production compilation), has a skills, a

rules (associative layer) and a knowledge (cognitive layer)

based level. Finally, only when you really want to change

something of the architecture programming skills are

necessary. Otherwise there are editors for the procedures

(domain knowledge) and for the interface description. The

procedure editor (Frische et al., 2009) can be used by any

domain expert, which has been shown by an informal

review that was performed by one of the end user partners in

the HUMAN project. And UsiXML (Limbourg et al., 2005)

which describes the interface in a way that it can be used by

the model can automatically transfer HTML pages into the

right format, has a graphical editor so that interface

designers can use tools that are similar to what they know

and XML programming is also possible. UsiXML is

developed by human factor experts at the Belgian

Laboratory of Computer-Human Interaction (BCHI).

159

The core of CASCaS is formed by the layered knowledge

processing component that contains the associative and the

cognitive layer.

A task that is encountered for the first time is processed

on the cognitive level with maximal cognitive effort. This

processing is goal driven; alternative plans to reach a goal

are evaluated usually through mental simulation, and finally

one plan is selected to be executed. With some experience,

the associative level is used, where solutions are stored that

proved to be successful; the pilot has for example learned

how to handle the cockpit systems in specific flight

scenarios. According to Rasmussen (1983), processing is

controlled by a set of rules that have to be retrieved and then

executed in the appropriate context. On the autonomous

level routine behavior emerges that is applied without

conscious thought, e.g. manually maneuvering an aircraft.

When solving a task, people tend to apply a solution on the

lower levels first, and only revert to solutions on higher

levels when lower-level ones are not available (Rasmussen,

1983) or when the situation requires very careful handling

due to unusual and safety relevant conditions.

The associative layer selects and executes rules from

long-term memory. It is modeled as a production system.

Characteristic for such systems is a serial cognitive cycle for

processing rules: A goal is selected from the set of active

goals (Phase 1), all rules containing the selected goal in their

goal-part are collected and a short-term memory retrieval of

all state variables in the Boolean conditions of the collected

rules is performed (Phase 2). If a variable is absent in

memory, a dedicated percept action is fired and sent to the

percept component to perceive the value from the

environment and to write it into the short-term memory.

After all variables have been retrieved, one of the collected

rules is selected by evaluating the conditions (Phase 3).

Finally the selected rule is fired (Phase 4), which means that

the motor and percept actions are sent to the motor and

percept component respectively and the sub-goals are added

to the set of active goals. This cycle is started when a

Boolean condition of a reactive rule is true. In Phase 2

reactive rules may be added to the set of collected rules if

new values for the variables contained in the State-Part have

been added to the memory component (by the percept

component). In Phase 3, reactive rules are always preferred

to non-reactive rules. The cognitive cycle is iterated until no

more rules are applicable.

The cognitive layer reasons about the current situation

and makes decisions based on this reasoning. Consequently,

we differentiate between a decision-making module, a

module for task execution and a module for interpreting

perceived knowledge (sign-symbol translator). In the

following, we will describe the decision-making module in

more detail, as it is relevant to modeling cognitive lockup.

For more information on the cognitive layer see Lüdtke et

al. (2009).

The decision-making module determines which goal is

executed. Goals have priorities, which depend on several

factors: goals have a static priority value that is set by a

domain expert. In addition, priorities of goals increase over

time if not executed. Implicitly, temporal deadlines are

modeled in this way. If, while executing a goal, another goal

has a distinctively higher priority than the current one, the

execution of the current goal is stopped and the new goal is

attended to. This decision depends on the priorities of the

goals and is extended by the parameter Task Switching

Costs (TSC), which determines the difference the priorities

need to have to halt the execution of a goal to select a

different goal to be executed. TSCs are described

extensively in literature (e.g. Jersild, (1927); Rogers &

Monsell (1995)). The higher the TSC is, the higher the

priority of another goal needs to be to switch to that goal. To

determine whether a goal should be interrupted and a

different goal should be executed, the TSC is added to the

current task priority. Only if a priority of another active goal

is above this threshold, this other goal is chosen to be

executed. For a visualization of the goals see Figure 2.

Figure 2: Visualization of the goals on the cognitive layer.

Dark gray and green goals are active. The framed goal is

currently executed. The yellow staff represents the

additional task switch costs.

Cognitive Lockup Model

In this section we describe how cognitive lockup is modeled

in the cognitive architecture described above. We model

cognitive lockup on the cognitive layer. The main reason for

this is that, as described above, on the cognitive layer we

have an explicit goal decision mechanism in which

cognitive lockup can easily be integrated. However, this can

be extended to the associative layer, as the principles

explained below are generally applicable to the goals of the

associative layer as well.

Time Pressure As described in Neerincx (2003), the time

pressure for a person plays an important role for cognitive

lockup. If a person has a value for the time pressure of more

than 0.75 (Neerincx, 2007), the task switch cost increases.

In general, this factor depends both on the time pressure of

the associative and cognitive layer. However, to simplify

matters, we will model this temporarily only related to the

cognitive layer, but will extend the concept later to the

associative layer. As written above, the formula that we use

is the following:

Time pressure = time required for tasks

time available for tasks

160

For example, if we have a task that can be done in 25

seconds and we have 100 seconds before it needs to be

finished, the predicted time pressure is 0.25.

The time required for a task is the time needed for

cognitively processing the task. This knowledge comes both

from the analysis of normative behavior, i.e. discussions

with experts that give an indication of the time a task takes,

in addition to cognitive theories on which the cognitive

architecture is based (e.g. (Anderson, 1993; Kieras &

Meyer, 1997)).

Modeling the time that is available for a task is quite

complex. For some tasks this knowledge is given in the

normative behavior. For example, a pilot needs to have set

the flaps before reaching the final approach phase. The time

that is available for a task can thus be calculated by the

knowledge of the current task, and a prediction of when the

approach phase begins, which can be gained from the

environment. For other tasks, it is not that easy to know the

time that is available to execute it. For example, for a

monitoring task, there is no standard deadline at which

monitoring has to be finished. However, the time pressure

will slowly increase, without having a clear deadline of the

task, as there is no unlimited time to execute any task.

Thus, for each task, it has to be evaluated whether the

time pressure can be based on a calculation of elements of

task knowledge and the environmental input, or whether it

has to be given a general estimate.

The time pressure is inherent to each goal as it only takes

aspects of the individual goal into account, but is dynamic

as the time until it needs to be finished is constantly

diminishing. We decided that this calculation is done each

50 ms, which is the cycle time of our architecture.

Level of Information Processing As described above, the

level of information processing does not play a relevant role

for cognitive lockup. This factor is not taken into account in

the model of task switching costs.

Task Set Switches As described above, task set switches

are defined as possible goal switches at a given moment.

The number of task sets is modeled as the number of goals

that are active at the moment. Temporarily, we only look at

goals in the cognitive layer.

The value of the task set switches is thus the number of

active goals in the environment. We assume that the model

always has activated all possible tasks that play a role at the

moment in the environment and are needed to handle the

current situation.

The Model

Above, we have described different aspects that increase the

probability of cognitive lockup. In our model, this is

simulated by increasing the task switch costs (TSCs) of the

goal that at that moment is processed. The TSC determines

the difference that the priorities need to have to halt the

execution of a goal to select a different goal to be executed.

The TSC depends on the number of goals that at that

moment is also active and could be selected to be processed,

and on the time to spare to execute the current goal. The

TSC is higher when there is high time pressure.

Furthermore, the higher the number of active goals is (i.e.

the possible task set switches) the higher are the costs to

switch to another goal. The following formula determines

the TSC:

TSC = StartTSC * (Time pressure + Task set switches),

with Time pressure = 0 if Time pressure < 0.75.

This means that the task switch costs depend on a start

value, which is a constant, and the sum of the two factors of

the time pressure and the task set switches.

As at each moment if there are active goals, at least one

goal is selected and executed, the task set switches

parameter is always at least 1. If there is only one goal, and

the task pressure is not high, the TSC is equal to the

constant start value. The moment there are several active

goals or the time pressure for the currently selected goal is

above the threshold of 0.75, the TSC is increased.

Conclusion

This paper presented the development of a cognitive model

of cognitive lockup: the tendency of humans to deal with

disturbances sequentially, possibly overseeing crucial data

from unattended resources so that serious task failures can

appear—e.g., in a cockpit or control centre. The model is

based on real life examples of cognitive lockup and the

psychological theories that are derived from these examples,

and laboratory experiments. It distinguishes time pressure

and number of tasks-to-do as two factors that increase task

switch costs and the corresponding risk of cognitive lockup.

A heightened task switch cost leads to less task switching,

even when another task has a higher priority, as the

difference between the priorities needs to be higher.

The proposed model should support the design and

evaluation of user interfaces that prevent such failures,

being used outside the academic community. The CASCaS

architecture proved to best fit with the requirements to

incorporate these factors and to support the UI engineering

process.

At the moment, we calculate the time pressure as a value

inherent to the individual goal. The interdependencies

between the timing of several goals will be taken into

account in the next version of the cognitive model (i.e.,

several tasks might in themselves not have a high time

pressure, but might together be time-critical, as all of them

might need to be finished before all of them can be

executed).

The values for the parameters we have chosen for our

cognitive model are mainly based on literature, and are

currently being evaluated in both laboratory experiments

and realistic simulator experiments. In this way, we refine

and validate the model, improving its plausibility and

predictions about the behavior of pilots. Application of the

model will provide user interfaces and procedures that

reduce the risks for lockup errors. Due to the cognitive

plausibility, we predict that the model can also be used in

other domains without substantial changes.

161

Acknowledgments

The work described in this paper is funded by the European

Commission in the 7th Framework Programme,

Transportation under the number FP7 – 211988.

References

Amant, R.S. and Riedl, M.O. and Ritter, F.E. and Reifers,

A. (2005). Image processing in cognitive models with

SegMan. Proceedings of HCI International 2005.

Anderson, J. (1982). Acquisition of cognitive skill.

Psychological review, 89(4), 369–406.

Anderson, J. (1993). Rules of mind. Hillsdale, NJ: Lawrence

Erlbaum Associates.

Anderson, J., Bothell, D., Byrne, M., Douglass, S., Lebiere,

C., & Qin, Y. (2004). An integrated theory of the mind.

Psychological Review, 111(4), 1036–1060.

Beevis, D., Bost, R., Döring, B., Nordø, E., Oberman, F.,

Papin, J., et al. (1994). Analysis techniques for man-

machine system design. AC/243(Panel 8) TR/7 Vol, 2.

Byrne, M.D. (2001). ACT-R/PM and menu selection:

Applying a cognitive architecture to HCI. International

Journal of Human Computer Studies, 55(1), 41-84.

De Jong, R. (1995). The role of preparation in overlapping

task performance. The Quarterly journal of experimental

psychology. A, Human experimental psychology, 48(1), 2.

Dekker, S. (2003). Failure to adapt or adaptions that fail.

Applied Ergonomics, 34(3), 233–238.

Frische, F. and Mistrzyk, T. and Lüdtke, A. (2009).

Detection of Pilot Errors in Data by Combining Task

Modeling and Model Checking. Human-Computer

Interaction--INTERACT 2009, 528-531.

Jersild, A. (1927). Mental set and shift. Archives of

Psychology. Vol, 14(89), 81.

Kerstholt, J., Passenier, P., Houttuin, K., & Schuffel, H.

(1996). The effect of a priori probability and complexity

on decision making in a supervisory control task. Human

Factors, 38(1), 65–78.

Kieras, D. E., & Meyer, D. E. (1997). An overview of the

epic architecture for cognition and performance with

application to human-computer interaction. Hum.-

Comput. Interact., 12(4), 391–438.

Laird, J.E. (2008). Extending the Soar cognitive

architecture, Artificial General Intelligence 2008:

Proceedings of the First AGI Conference.

Limbourg, Q. and Vanderdonckt, J. and Michotte, B. and

Bouillon, L. and López-Jaquero, V., (2005). Engineering

Human Computer Interaction and Interactive Systems,

200-220.

Lüdtke, A., Osterloh, J.-P., Mioch, T., Rister, F., & Looije,

R. (2009, September 23–25). Cognitive modelling of pilot

errors and error recovery in flight management tasks. In

P. Palanque, J. Vanderdonckt, & M. Winckler (Eds.),

Human error, safety and systems development, 7th ifip wg

13.5 working conference, hessd 2009 (Vol. 5962).

Brussels, Belgium: Springer.

Meij, G. (2004). Sticking to plans: capacity limitation or

decision-making bias? Doctoral dissertation, Department

of Psychology, University of Amsterdam, Amsterdam.

Meyer, D.E. and Kieras, D.E. (1997). A computational

theory of executive cognitive processes and multiple-task

performance: I. Basic mechanisms. Psychological Review,

104 (1), 3-65.

Moray, N., & Rotenberg, I. (1989). Fault management in

process control: eye movements and action. Ergonomics,

32(11), 1319–1342.

NTSB (1973). Eastern Airlines l-1011, Miami, Florida,

December, 29, 1972 (Tech. Rep. No. NTSB-AAR-73-14).

Washington, DC: National Transportation Safety Board

(NTSB).

Neerincx, M. (2003). Cognitive modelling of pilot errors

and error recovery in flight management tasks. In E.

Hollnagel (Ed.), Handbook of cognitive task design (pp.

283–306). CRC.

Neerincx, M. (2007). Modelling cognitive and affective load

for the design of human-machine collaboration. Lecture

Notes in Computer Science, 4562, 568.

Newell, A. (1994). Unified theories of cognition. Harvard

Univ Pr.

Newell, A., Rosenbloom, P., & Laird, J. (1989). Symbolic

architectures for cognition. In M. Posner (Eds.),

Foundations of cognitive science (pp. 93–131).

Cambridge, MA: MIT Press.

Olsen, D., & Goodrich, M. (2003). Metrics for evaluating

human-robot interactions. In Proceedings of permis (Vol.

2003).

Rasmussen, J. (1983). Skills, rules, knowledge: Signals,

signs and symbols and other distinctions in human

performance models. IEEE Transactions: Systems, Man

and Cybernetics, SMC-13(3), 257–266.

Rasmussen, J. (1986). Information processing and human

machine interaction: An approach to cognitive

engineering. Elsevier Science Inc. New York, NY, USA.

Rogers, R., & Monsell, S. (1995). Costs of a predictable

switch between simple cognitive tasks. Journal of

Experimental Psychology-General, 124(2), 207–230.

Rubinstein, J., Meyer, D., & Evans, J. (2001). Executive

control of cognitive processes in task switching. Journal

of Experimental Psychology Human Perception and

Performance, 27(4), 763–797.

Salvucci, D.D. and Taatgen, N.A. (2008). Threaded

cognition: An integrated theory of concurrent

multitasking. Psychological Review, 115(1), 101-130.

Schumacher, E., Lauber, E., Glas, J., Zurbriggen, E.,

Gmeindl, L., Kieras, D., et al. (1999). Concurrent

response-selection processes in dual-task performance:

Evidence for adaptive executive control of task

scheduling. Journal of Experimental Psychology: Human

Perception and Performance, 25, 791–814.

Wray, R., & Jones, R. (2005). An introduction to soar as an

agent architecture. In R. Sun (Ed.), Cognition and

multiagent interaction: From cognitive modeling to social

simulation (pp. 53–78). Cambridge University Press.

162

