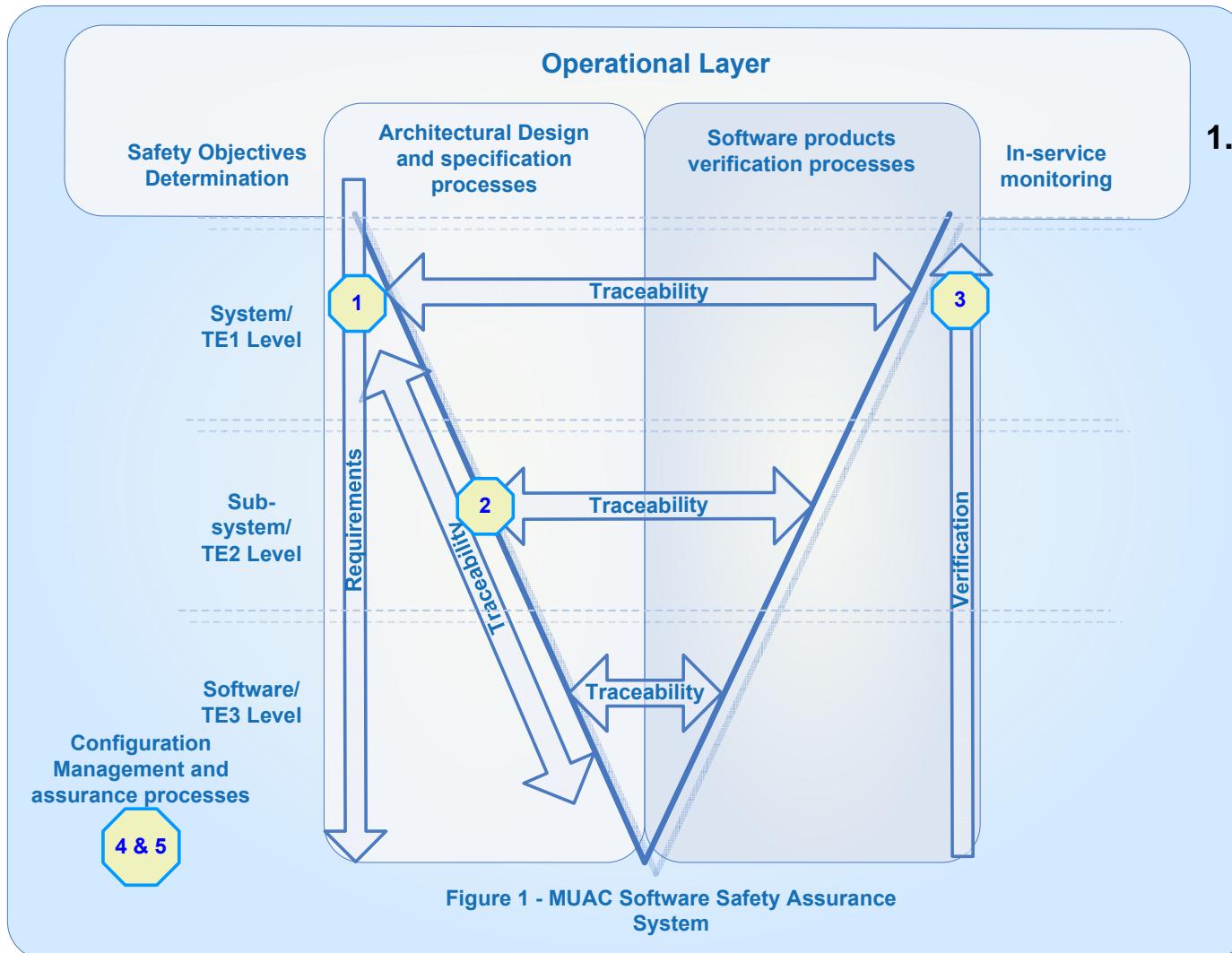


MUAC SSAS Process

ES2 WS1-2013 Software Safety Assessment Workshop

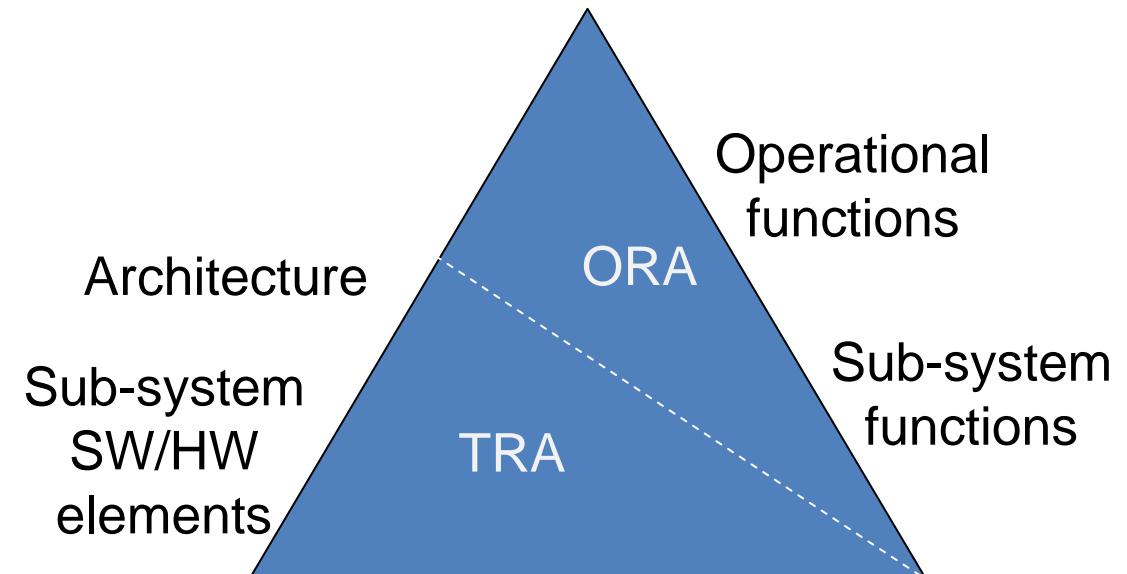
7- 8 May 2013

Marinella LEONE, ASD MUAC


Morten Trier HANSEN, ENG MUAC

The European Organisation for the Safety of Air Navigation

- SSAS procedure in MUAC SMS:
 - Overview of SSAS central process and sub-processes
- Method for SW Assurance in projects/developments
 - Process and tools (AMC) adopted for projects/developments @MUAC and between MUAC and manufacturers
- Method for SW Assurance in maintenance:
 - Maintenance process with SW assurance as an integrated set of activities
- Conclusions


SSAS procedure in MUAC SMS

1. **System or SW safety requirements** are derived → SW requirements are specified

1. System and SW safety requirements

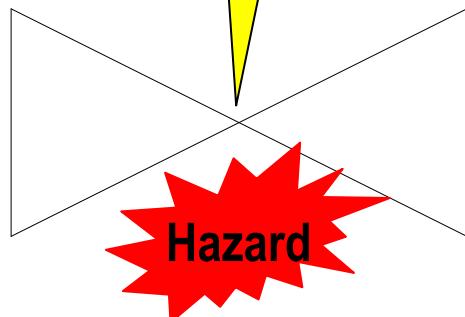
- **Operational Risk Assessment** → Functional risk analysis and mitigation process to derive SWAL requirements as well as functional and availability requirements
- **Technical Risk Assessment** → drive requirements and keep trace of procedures to recover from failures of sub-systems

Operational Risk Analysis

- Operational Risk assessment is constructed on the basis of Functional failure analysis for operational service functions:
 - Allocation of SWAL to interfacing sub-systems according to severity and likelihood
 - Requirements are propagated to feeding sub-systems

Technical Risk Assessment (TRA)

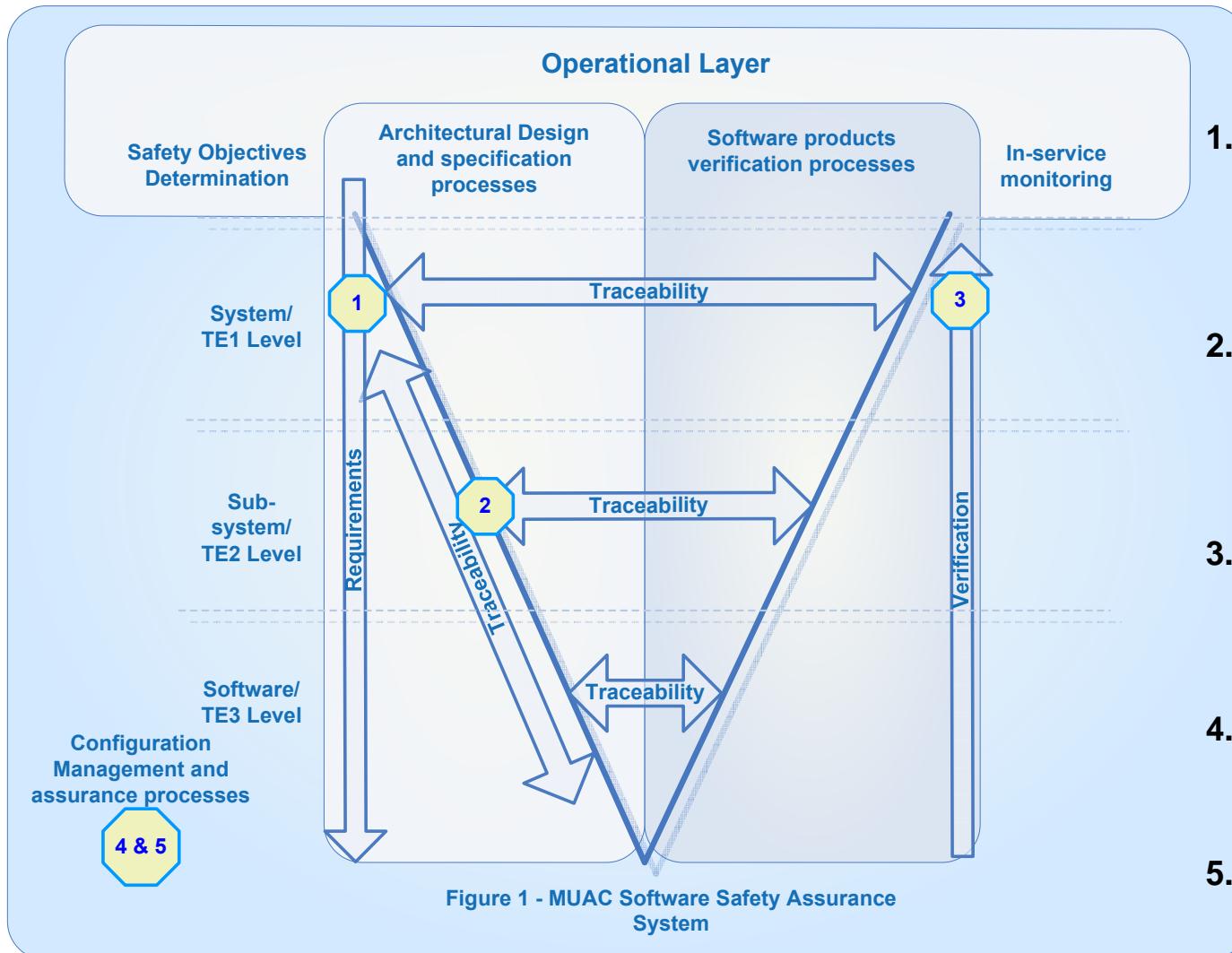
FMEA


Component	Failure mode	TE	OE	MA
<HW>	Failure			
...				
<SW>	Crash, loop ...			
...				
<interfaces>	Overload, corruption..			
...				

MAEA

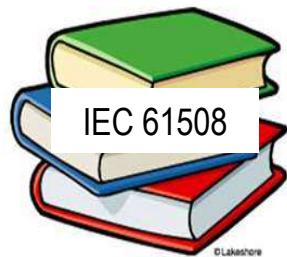
MA	Proc.	When	TE	OE
Replace	MPR	Night		
<corrective, e.g. replace HW>				
<adaptive, e.g. install release>				
<preventive, e.g. health check>				

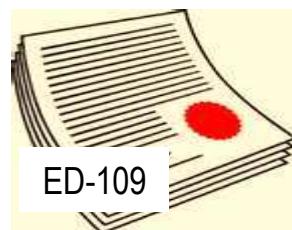
FMEA: Failure mode effect analysis:


- Assess effects of all failures + define a corrective maintenance activity

MAEA: Maintenance activity effect analysis:

- Assess effects of all maintenance activities


SSAS procedure in MUAC SMS


1. **System or SW safety requirements** are derived → SW requirements are specified
2. **Traceability** through the relevant system architectural levels down to the design and with verification records
3. **SW** satisfies requirement to **level of confidence** equivalent to criticality of software
4. **Configuration management** processes in place
5. **Relevant stakeholders** are involved

- SSAS procedure in MUAC SMS:
 - Overview of SSAS central process and sub-processes.
- **Method for SW Assurance in projects/developments**
 - **Process and tools (AMC) adopted for projects/developments @MUAC and between MUAC and manufactures**
- Method for SW Assurance in maintenance:
 - Maintenance process with SW assurance as an integrated set of activities
- Conclusions

Derivation of Tender Safety Requirements

- Coming from SIL (IEC61508) and FHA/FTA or RBD for apportionment of requirements
- Moving to SWAL from Functional failure analysis:
 - Allocation to interfacing system according to severity and likelihood
 - Requirement propagation to feeding sub-systems
- Easy in principle to change approach at the beginning of a new project. However initial effort to align expectations of stakeholders and some lessons learned are lost

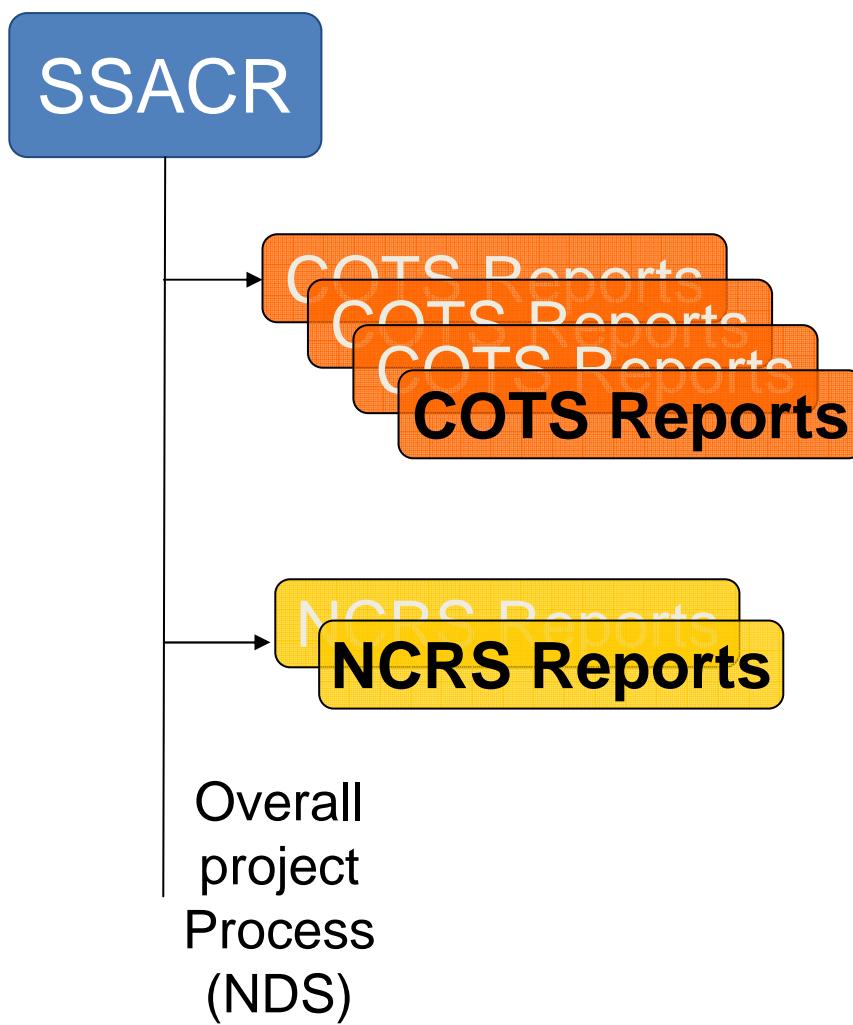
C-SOW Requirements

[SOW - 647] The Contractor **shall**:

- adopt the procedures, guidance and templates of the Customer's SMS for the following activities, as required:
 - Safety Management Plan (SMP).
 - Preliminary System Safety Assessment (PSSA).
 - System Safety Assessment (SSA).
 - System Safety Case (SSC).
- adopt the **EUROCAE Guidelines ED-153** for the development and/or selection of all software deliverables, or demonstrate that the Contractor's method of software development and/or selection is fully consistent with ED-153.
- adopt the international standard IEC61508 (Part 2; particularly Tables A.16 to A.18 and B.1 to B.5) for the development and/or selection of all hardware deliverables, or demonstrate that the Contractor's method of hardware development and/or selection is fully consistent with IEC61508. This is to ensure the hardware is consistent with the requirements for Mean Time Between Failures (MTBFs) and software integrity.
- adopt the Regulation (EC) No 552/2004 dated 10 March 2004 as amended by Regulation (EC) No 1070/2009 (or subsequent version/ requirements applicable at time of PA), safety part.

[SOW - 823] The Contractor **shall** comply with the **SWAL-3** as required by the compliance tables.

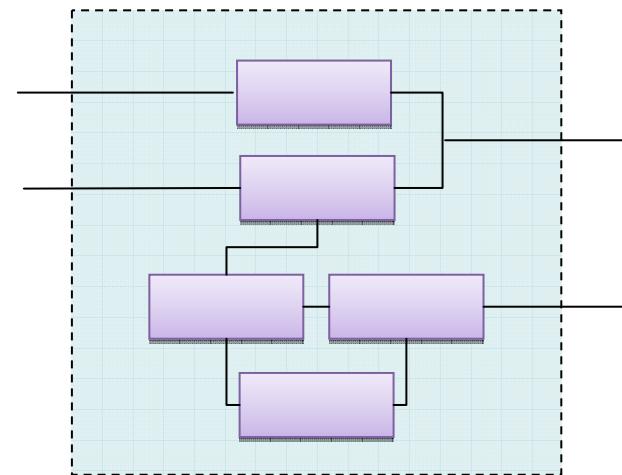
Ed-482 Compliance approach

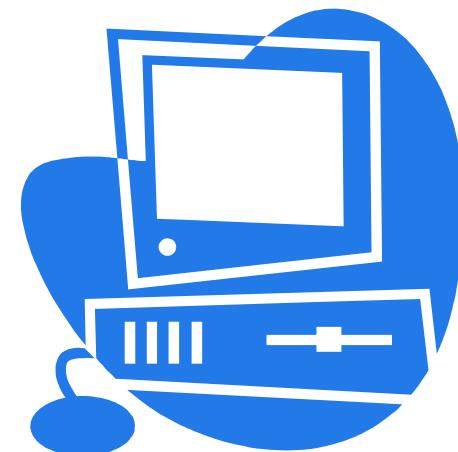

[SOW - 665] Compliance to the DSRs **shall** be demonstrated as follows:

- for Software DSRs: SWAL compliance via individual compliance statements with supporting evidence for each applicable Objective from the compliance tables in ED-153, as follows:
 - For **Newly Developed Software (NDS)**, the Contractor shall show compliance to SWAL 3 objectives in the tables from Sections 3 to 7.1 with the following structure:
 - a) If all NDS are developed by the same supplier and the same process is applied, only one set of SWAL compliance tables (from Section 3 to Section 7.1) shall be provided by the Contractor.
 - b) If any NDS is developed by a different supplier or according to a different process, a separate set of SWAL compliance tables (from Section 3 to Section 7.1) shall be provided by the Contractor for that software.
 - For **Commercially available Off-The-Shelf (COTS)**, the Contractor shall show compliance to SWAL objectives in the tables from Section 3 and Section 7.2 with the following structure:
 - a) Separate sets of SWAL compliance tables (i.e. from Section 3 and Section 7.2) shall be provided for each COTS item.

Note: Compliance in Section 3 can be demonstrated via reference to the NDS Section 3 tables, if the evidence provided in those tables have accounted for the COTS. (Section 3 provides objectives relating to overall project initiation, planning and safety, in which it would be valid to include COTS evidence).

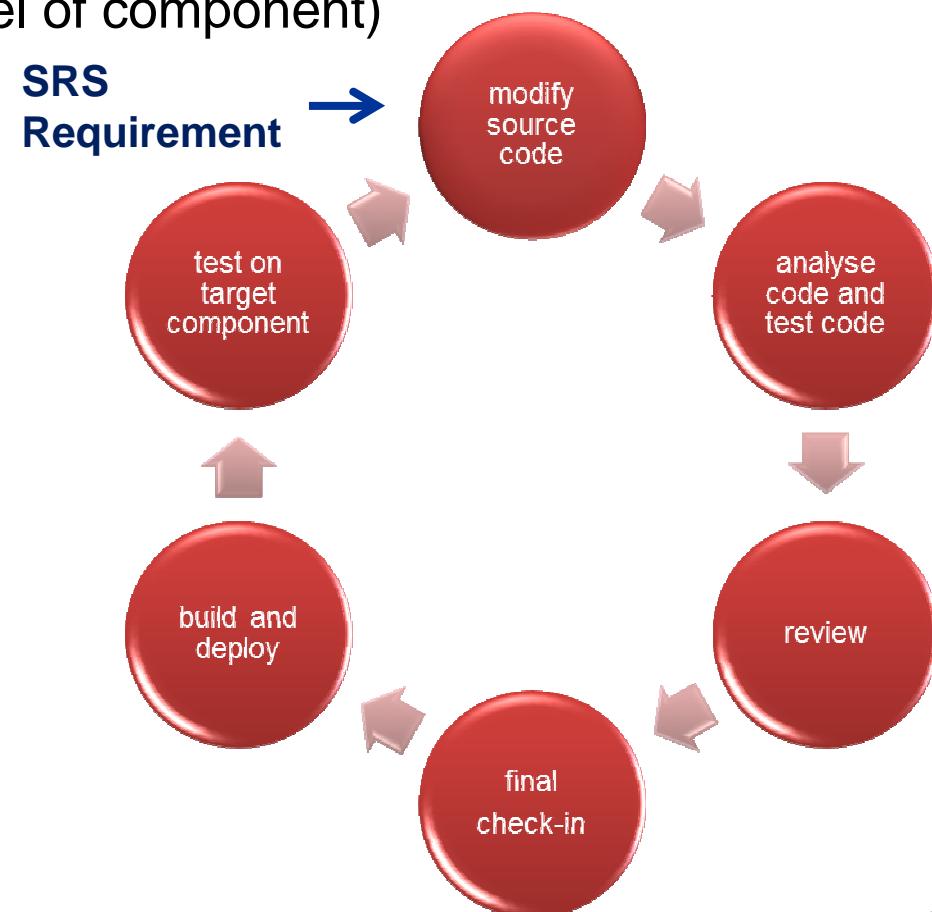
- For **Non-COTS Reused Software (NCRS)**, all the SWAL 3 objectives in the compliance tables from Sections 3 to 7.2 shall be used, thus including both development & COTS tables. This is because a properly substantiated combination of the NDS and COTS approaches is acceptable to the Customer when demonstrating SWAL 3 compliance; i.e. a lack of development evidence for the NCRS can be mitigated by COTS evidence and vice versa. The following structure shall be used:
 - a) If evidence for NCRS is provided from the same supplier and follows the same process, only one set of compliance tables shall be provided by the Contractor.
 - b) If any NCRS is developed by a different supplier or following a different process then separate SWAL compliance tables will be provided by the Contractor for that software.


Compliance Reports

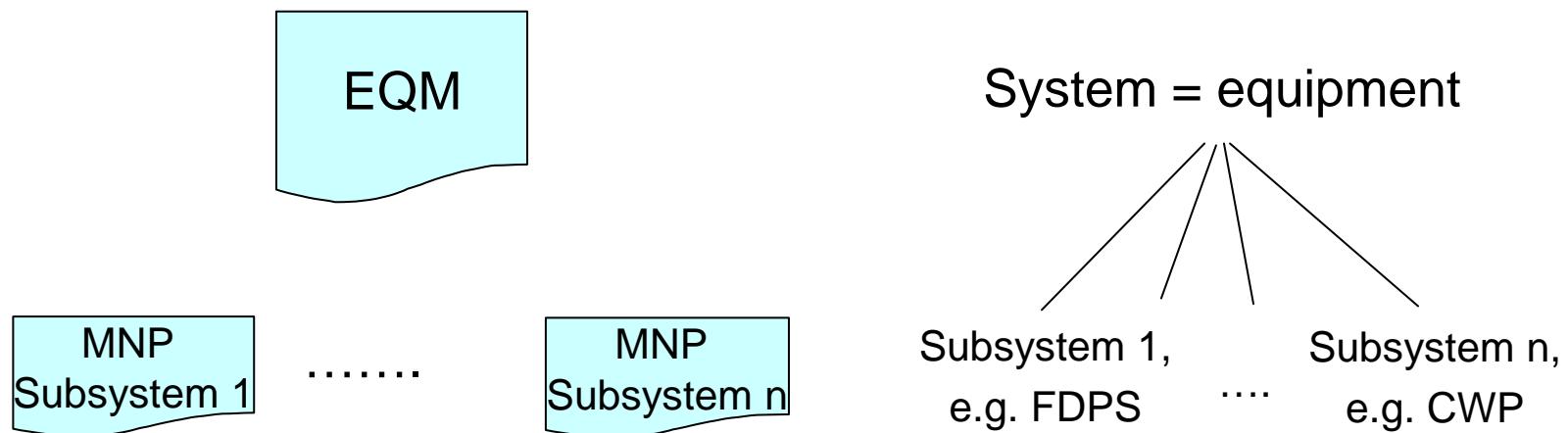

- Ability to meet objectives?
 - CRs from start
- Discrepancy of processes?
 - Company processes
 - ED-153 expectation table
- Quality of documents?
 - Constructed assurance
- In-service history?
 - Monitoring method
- Unintended (unspecified/unused/unneeded) functionality?
 - Identify/assess

Component definition

- **NDS** – possible to design/define the correct decomposition; appropriate level of detail for SWAL analysis (SRS)?
- **NCRS** - Existing software might not be modular or might be decomposed in too low level components
- Creating logical CSCI level to abstract from detail?
- Artificial documentation structure not reflected by software packaging. Difficult/redundant to redefine interfaces at logical level that are covered by low level components (in specifications and tests)


- Low level SSS and poor SRS?
- Facing fear for “explosion” of SW requirements and tests
- Sometimes missing in the SRS (startup management, shutdown management, logic to transform inputs into outputs, mode of operations, error handling, boundary condition, etc...) directly incorporated in design documentation (e.g. algorithm)
- No need for SRSSs? Important when different actors involved and criticality/complexity of the system
- Knowledge gap not reconciled between system and software engineers?

Approach for changes to legacy


- **NCRS** - No SRS exist for some legacy software (often just SSS, maybe SRS at lower level of component)
- SRS that introduce change are refined up to the level that the logic/algorithms supporting the corresponding functions can be tested

*Continuous Integration
during SW development
for NCRS*

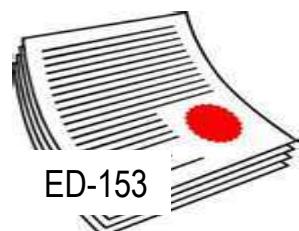
- SSAS procedure in MUAC SMS:
 - Overview of SSAS central process and sub-processes.
- Method for SW Assurance in projects/developments
 - Process and tools (AMC) adopted for projects/developments @MUAC and between ANSP and manufacturers
- **Method for SW Assurance in maintenance:**
 - **Maintenance process with SW assurance as an integrated set of activities**
- Conclusions


- Maintenance is easy:
 - No PMP, CMP, SDP, RMP, SVP, ... - just:

- But not so easy anyway:
 - Process changes have large consequences
 - One process needs to fit all

Safety in EQM

Standards


EQM

Development

MNP

Annex D

Strategy
 Organisation
 Processes
 A: CfM
 B: Procedures
 C: Documentation
 Safety

Development

Annex D

Development

Objective: Protect staff from
 complexity of safety standard

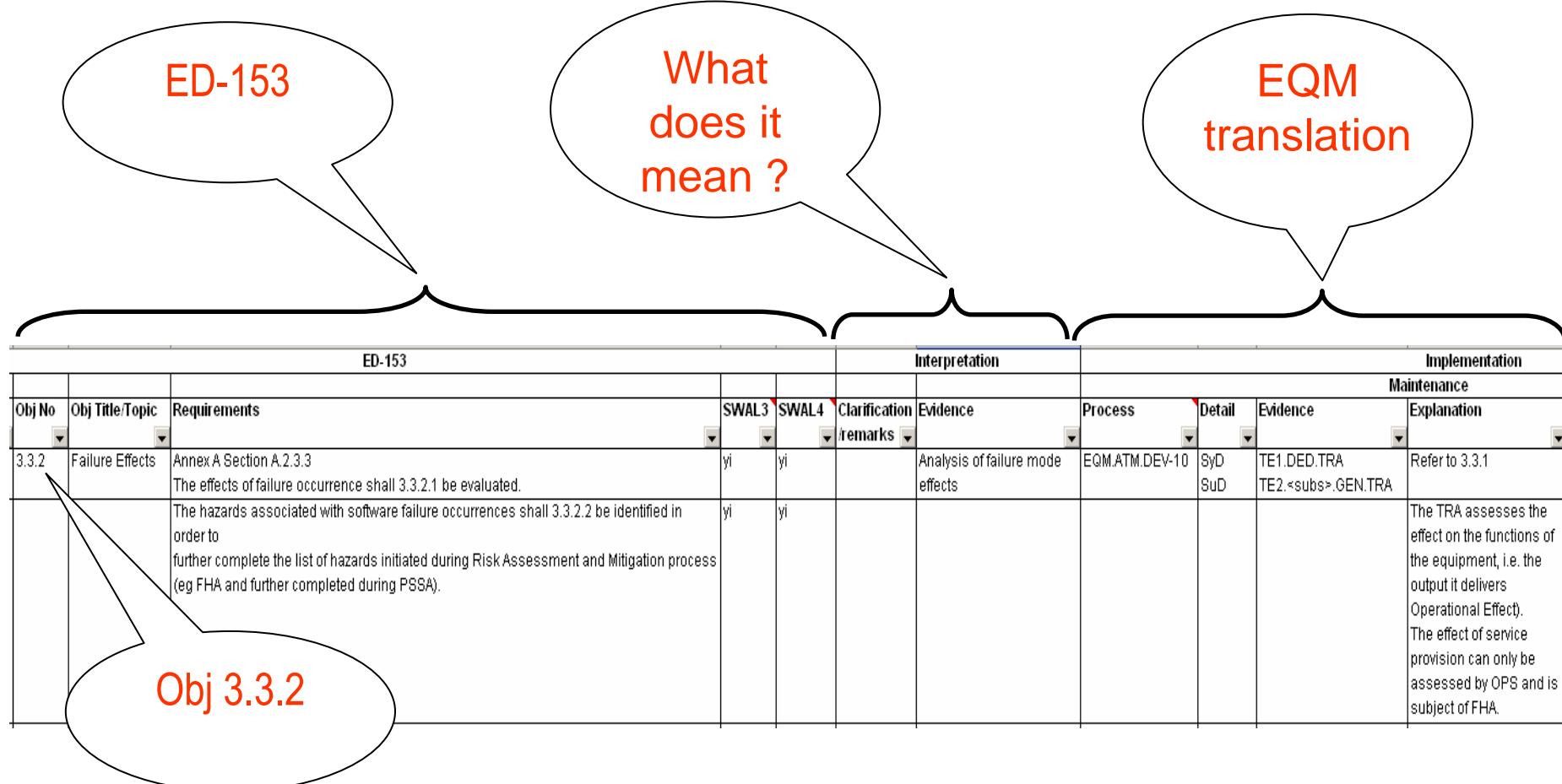
ED-153 example: Requirements

ED-153

What
does it
mean ?

EQM
translation

Obj No	Obj Title/Topic	Requirements	Interpretation			Implementation		
			SWAL3	SWAL4	Clarification remarks	Evidence	Process	Detail
4.3.4	SW requirements analysis	Annex A Section A.3.3 The developer shall 4.3.4.1 establish and document software requirements, using software requirements standards/rules as defined per Objectives 4.3.9 & 4.3.10.	y	y		Documented software requirements.	EQM.ATM.DEV-10	SuRA SoRA
		Obj 4.3.4 The Software requirements shall: - specify the performance, so as to ensure accuracy, timing and hardware, robustness to abnormal operating conditions, overload tolerance; - be complete and correct; - comply with the System Requirements; - an identification of the configuration/adaptation data range.	y	y		Documented requirements with scope as described in req. Traceability to higher level reqs to demonstrate completeness.	EQM.ATM.DEV-10	SuRA SoRA


EQM example: Requirements

Service & Maintainability

Id	Requirement	EQM reference	S&M	SWAL 4	SWAL 3	ED-153 reference
SuRA-1	All subsystem requirements must be documented	TE2 SSS	X	X	X	Obj 4.3.4 Obj 4.3.12
	Subsystem requirements must specify: - functional behaviour - capacity - accuracy - timing performances - software resource usage and margins (e.g. memory, CPU load, disk space, communication bandwidth, ...) on target hardware - adaptation/configuration data ranges and interface boundaries - robustness to abnormal operating conditions - overload tolerance	TE2 SSS	X	X	X	Obj 4.3.4 Obj 4.3.13
	Subsystem requirements must specify hardware requirements, e.g. MTBF and MTTR, for maintainability.	TE2 SSS	X			
	Subsystem requirements review must verify that requirements are: - correct and complete - consistent - feasible - unambiguous - traceable	RID	X	X	X	Obj 5.4.3
	Subsystem requirements must be traceable to system requirements (e.g. VRS, SRS, etc.)	RID	X	X	X	Obj 5.4.3 i
	All requirements must be traceable to system requirements (e.g. VRS, SRS, etc.)	TE2 SSS (traces)	X	X	X	Obj 4.3.15 a Obj 5.4.10 a
	Traceability must be maintained at the system level (e.g. VRS, SRS, etc.)	RID	X	X	X	Obj 5.4.12

Subsystem Requirements Analysis (SuRA)

ED-153 example: Failure analysis

EQM example: Failure analysis

Id	Requirement	EQM reference	S&M	SWAL 4	SWAL 3	ED-153 reference
SuD-1	Subsystem design must be reviewed against architectural design constraints and design standards	RID	X	X	X	Obj 5.4.5 d
	Algorithms must be described.	TE2 SSDD	X	X	X	Obj 4.3.4
	Subsystem design must describe the use, version and configuration of COTS tools.	TE2 SSDD	X	X	X	Obj 7.2.1 Obj 7.2.4 Obj 7.2.8 Obj 7.2.10
SuD-2	Effect of failure of HW, SW and interfaces must be described.	TE2 TRA	X	X	X	Obj 3.1.5 Obj 3.3.1 Obj 3.3.2
	Effect of failures of COTS tools must be described.	TE2 TRA		X	X	Obj 3.3.2
	Effects of undesired COTs tool behaviour must be mitigated by safety requirements.	TE2 TRA TE2 SSS		X	X	Obj 7.2.6
	COTS tool failure must not impact performance or stability.	TE2 SSDD	X	X	X	Obj 7.2.6
	Effect of release installations must be described.	TE2 TRA		X	X	Obj 4.5.4
	Subsystem test description must verify correct mode behaviour.	TE2 TRA		X	X	Obj 5.4.3 e
SuD-3	Software must be broken down into software items.	TE2 SSDD			X	Obj 4.3.5
	Software requirements must be allocated to software items.	TE2 SSDD			X	Obj 4.3.15 b
	Software item interfaces must be described.	TE2 SSDD			X	Obj 3.1.1

Subsystem
Design
(SuD)

Obj 3.3.2

Obj 3.3.2

EQM development process

Phase applicability depends on SWAL:

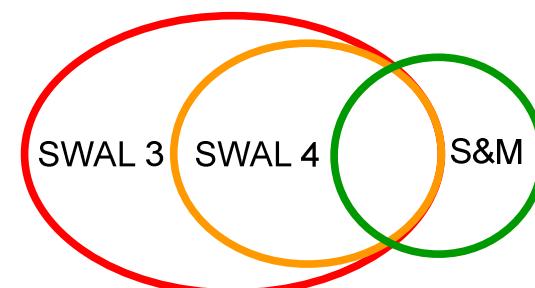
- **Completed as part of each MNP for each CI**
- **No “cryptic” requirements**
- **Fulfillment of each requirement to be justified with reference to evidence**

MNP: EQM compliance matrix

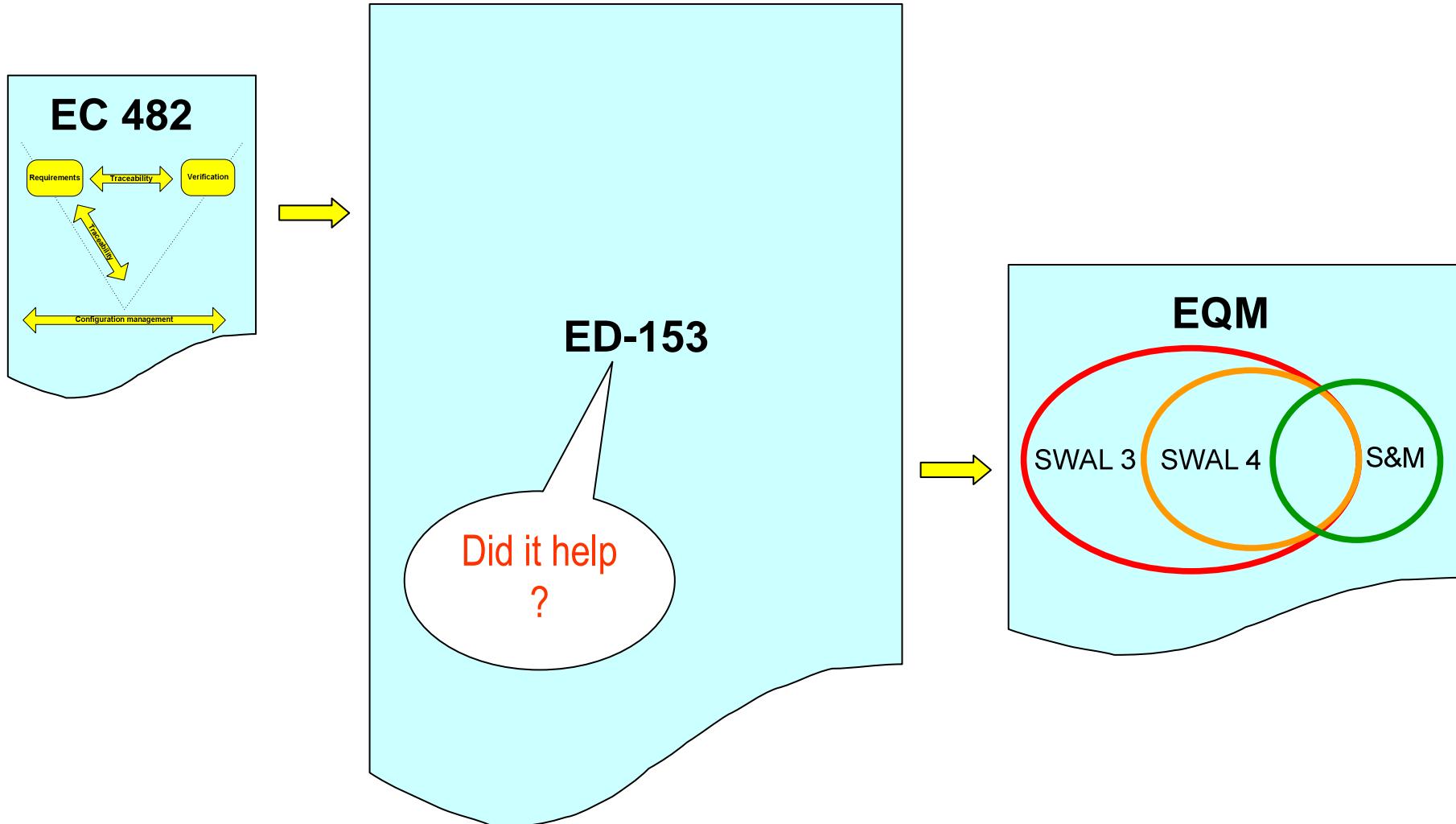
Req. Id	Subject	EQM	SWAL 4	SWAL 3	Implementation	Compliant (Y/N)
SuRA-1	Subsystem requirements	X	X	X		
SuRA-2	Subsystem description		X			
SuD-1	Subsystem design	X				
SuD-2	Failure analysis					
SuD-3	Software decomposition					
SuD-4	Design rationales					
SuD-5	Design standards					
SoRA-1	Software requirements			X		
SoRA-2	Software test description			X		
SoD-1	Software design					
CUT-1	Coding standards					
Sol-1	Software integration					
SoV-1	Software test plan					
SoV-2	Software test report					
Sul-1	Subsystem test plan	X				
Sul-2	Subcontractor deliverables					
Sul-3	Subsystem integration			X		
SuV-1	Subsystem test report	X	X	X		
SuV-2	Subsystem SWAL compliance		X	X		
Tools-1	Tools confidence		X	X		
Tools-2	Development environment	X	X	X		
COTS-1	Problem reporting		X	X		
COTS-2	Service experience		X	X		
COTS-3	Reputable vendors	X				

Development process summary

SWAL 4:


- Subsystem requirements, review, traceability
- Subsystem design
- Subsystem tests, traceability
- Systematic failure mode analysis
- Subcontractor deliverable review/acceptance (SWAL)
- Development tools identification
- Tools and COTS assurance

SWAL 3 (in addition to SWAL 4):


- SW decomposition, SW item requirements, review, traceability
- SW item tests, traceability
- Design choices/rationales + standards
- Failure mode testing

Service & Maintainability :

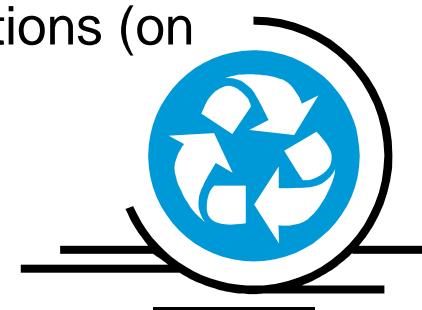
- Coding standards
- COTS from reputable vendors

Reflection over EQM extension

Ongoing: Security extensions

- SSAS procedure in MUAC SMS:
 - Overview of SSAS central process and sub-processes.
- Method for SW Assurance in projects/developments
 - Process and tools (AMC) adopted for projects/developments @MUAC and between ANSP and manufacturers
- Method for SW Assurance in maintenance:
 - Maintenance process with SW assurance as an integrated set of activities
- **Conclusions**

Conclusion 1


- Difference between MUAC and suppliers' expectations for development processes and tools (AMC) application in projects
- Difference of development processes and compliance approaches for recent and old legacy systems during maintenance @MUAC
- Involvement/understanding of stakeholders about SSAS application
- Compliance for COTS and legacy – Problems of in-service experience monitoring in evolving configuration and used environment
- Unintended functions (potential customization and configurations for NCRS and COTS)

Conclusion 2

- Component definition (SWAL3)
 - System decomposition (where is what I need? What should I analyse? I should get there... long way and many requirements I need an iterative method to focus in the detail/review)
- SRS completeness and correctness:
 - Design documents cover the behaviour and input/output... usefulness not seen
 - Gap between system engineer terminology and software engineer terminology
 - System-software engineer is the same = usefulness?
- Identification of pitfalls after selection of AMC (need guidance on available options and limitations)
 - E.g. Ed-153 – Depth of design transparency

Conclusion 3

- SW Safety Requirements? Where do they come from? Forgot? Are we focusing just on quality process?
- Invest on Software Safety Requirements derivation and implementation analysis:
 - Analysis of DSR from RA and mapping in SRS/design
 - SW Safety Assessment Techniques, e.g. SW FMEA and SHARD
 - HF-Safety Techniques, e.g. HMI design assessment
 - Safety impact assessment of unspecified functions (on the table and in validation)
 - Review of Risk Assessments and SRS from analysis of occurrences

SQS, SSQ, QSS ?

- Management process evolution:
 - EC 1035/2011, sec 3.2: “Air navigation service providers may integrate safety, security and quality management systems into their management system” – that’s what we want.
 - Safety and Security is about management of specific risks
 - Quality defines and assures the overall process

Thank you for your attention
Questions?

marinella.leone@eurocontrol.int

morten-trier.hansen@eurocontrol.int