
ANA Software Safety Assurance

System

The journey so far…

Recognition

• We recognise:

– Our systems are becoming more complex

– Our systems are software dependent

– There is a regulatory requirement for a SSAS

Objectives

• We have two very simple objectives:

– Ensure that the current levels of safety are at least

maintained

– To satisfy our NSA that we meet the regulatory

requirement

Scope of the Problem

• Here are a few
thousand lines of
code (about 6 kloc)

• Its in a part of the
Linux kernel

• Less than 0.05% of
the operating
system

• Can you spot the
bug?

Obvious bug in kernel driver

• Come on, its obvious…

• You must be able to see it now?

A simple mistake

• Cut and paste leads to duplication

Correct code

• Count should be the ACL header size, not the event size

Scope

• So we cannot expect to find every defect

• We simply don’t have the resources or

expertise

• We need to be able to select suppliers we can

trust

• We need to be prepared when things go

wrong

Our Strategy

• Divide the

problem into

chunks

• Establish “pillars”

to support our

objectives

Requirements

Management

Integrity

Assurance

Reactive

Controls

Monitoring

Regulatory

Approval

Use Existing Processes

• We already have
project and safety
management
processes

• Documented in the
SMS

• Make sure they
properly cover
software

Requirements Management

• Review operational requirements
capture process

• Review safety requirements
capture process

• Review requirements
management tools (DOORS?,
Trac?, Access? Excel?)

• Requirement compatibility
process (non-interference)

Integrity Assurance

• Probably the biggest challenge

• We are still developing the best

approach

• Initially likely to include a mixture of:

– Checklists / supplier questionnaires

– Supplier audits

– Evaluation tables (score cards)

Integrity Assurance contd.

• Series of workshops

• Key aspects to be expected of

suppliers

– A product safety assessment has been

performed

– An established software quality system

is in place and results are measured

– Configuration management is in place

Verification and Validation

• Plan V & V at the system boundary

• Test defences (pro-active controls)

– Identified during hazard assessment

– I.e. auxiliary supply operation, fail-over

• Inspect correctness of

documentation

• Validation of assumptions

• Validation of ‘known configuration’

Training to Audit

• Risk based approach

• How to generally recognise good
and bad software suppliers
– Requirements management

– Coding standards

– Code reviews

– Unit tests

– Traceability

– Configuration management

• Site visit to a good ‘reference’
supplier

Reactive Controls

• Not yet able to properly assure our

software

• Reactive controls can ensure safety

• Emphasis on failure conditions

• ATC defined procedures

• Training in unusual circumstances

• Planned workload reduction – flow

control?

Measure Defects

• Not yet developed, but some thoughts:

• Existing occurrence scheme (RAT)

– but overload with new software systems?

• How to classify and measure ‘bugs’

– Most are probably trivial

– Many minor defects may indicate poor

quality

– What about ‘incorrect’ functionality?

Measure Effectiveness

• Two trial projects

• Process to capture:

– Defects

– ‘Incorrect’ functionality

– Inconsistencies

– Operator satisfaction(?)

• As much detail as possible initially

• Establish a baseline

• Monitor improvements over time

Phased Introduction

• Phase 1: Action Plan

• Phase 2: Procedures, Templates and Training

• Phase 3: Two trial projects ALCMS and ASMGCS

• Phase 4: Performance review, critical systems

review

• Phase 5: Risk assessment for legacy equipment

Regulator

• Agree action plan

• Approve SSAS procedures

• Approve two trial projects

• Opportunity to review and adjust

SSAS

• On-going dialogue and approvals

In Summary

• Ensure we know our [safety] requirements

• Learn how to assess suppliers and where to target V&V

efforts

• Know that software fails, learn how to predict software failure

modes and plan to react

• Keep measuring performance

• Involve the regulator

• Our approach is to break SSAS into smaller ‘chunks’

