ANA Software Safety Assurance
System

Recognition

* We recognise:
— Our systems are becoming more complex

— Our systems are software dependent

— There is a regulatory requirement for a SSAS

LCenTisA

Objectives

We have two very simple objectives:

— Ensure that the current levels of safety are at least
maintained

— To satisfy our NSA that we meet the regulatory
requirement

LCenTisA

.Iﬂ-]q:

1

ALRTUR G R AR A
X ! | | L - |

| ¥

VAT
toln

i

E%ﬂﬂ%ﬁtﬁ

i

Scope of the Problem

e e Here are a few

e thousand lines of
EEE code (about 6 kloc)
= = = * Itsin a part of the
Linux kernel

Less than 0.05% of

the operating
system

e Canyou spot the
bug?

‘.1' i‘lliigilihli l I I
LRI LR R R
A L L
ERILRIERIER LR ERIL
TR ETTITN
i
|m | m | kil
VLR
a
|
[

MRS
¥ TR AL
in v .' E,

MRS
MRS

[% ']
.Iﬂ-]q:
.Iﬂ-]q:

1
1
®

f

!

ik
TR
N]

LT
v

R AT
H i .'I'I:' | I !

i

,
[ki
i

UL L
il
"
“ﬁyi%w!lw?tiwi
, -
il
"
g mm e

U AUl
e e

il

i

il
RS

e e e

ACcnTiSA

Obvious bug in kernel driver

e Come on, its obvious...

A e = e .
— e
[e .
T
e
o=
=
ey
e
e .

e You must be able to see it now?

LCenTisA

A simple mistake

if (info-*rx_state = RECV WAIT PARCEET TYPE)

info-rrx_skb-»dev = (void *) info-rhdew;
bt _chiinfo->rx akbk)->pkt type = inb{iobase + URRT RX);

switch (bt _chki{info—>rx skb)->pkt_ type) {

case HCI _EVENT PET:

T PP S R T SREHE—HEATT T
info->rx count = HCI ENT HDR SIZE;
Break;

case HCI ACLDATA PET:

LR N - - e R el O = N e

—
= HCI_ENT HDR_SIZE;

info—>*rx count
—rr

case HCI_ SCODATZ PET:
info->rx_state = RECV _WATT 500 HERDER;
info-¥rx_count = HCI_SC0_HDR _SIZE;
brezk;

default:
f* Unknown packet */
BT ERR("Unknown HCI packet with type 0x%0Zx receiwved™, bt_cbi{info->rx gskb)->pkt_type);
info-*hdev->stat.err_ rxt++;
clear bit (HCI_RUNNING, &{info-rhdev->flags));

kfree_skbi{info->rx skb);
info->rx_ skb = HULL;
break;

e Cut and paste leads to duplication

LCenTisA

Correct code

{info->rx_state = RECV_WAIT PACKET TYPE) |

info->rx skb—>dev = (void *) info-*hdew;
bt _chbiinfo-»rx skb)->pkt_type = inblicbase + URRT RX);

awitch (bt _cbhlinfo-»rx akb)->pkt_type) |

case HCI EVENT PET:
info-*»rx state = RECYV WAIT EVENT HERLDER;
info-*rx count = HCI_ENT HDR S5STIZE;
brezk;

case HCI ACLDATA PET:
'in—_r‘—}'r'u:_'=|1'.=|1'ﬁ = QT'I'":J'_HE _EI"T._T—TT'E ;T'i;

info-*rx count = HCI_ACL HDR STZE;:

case HCI SCODATR PET:
info-*rx state = EECV WAIT 5C0C HERDER;
info-*rx count = HCI_S5C0 HDR SIZE;
break;

default:
/* Unknown packet */
BT ERR ("Unknown HCI packet with type 0x%0Zx received™, bt_cb({info->rx akb)->pkt type);
info-*hdev->stat.err_rxt+;
clear bit (HCI_RUNNING, & {info-rhdev->flags));

kfree skbl{info->rx_skb);

info-rrx skb = NULL;
break;

Count should be the ACL header size, not the event size

LCenTisA

Scope

So we cannot expect to find every defect

We simply don’t have the resources or
expertise

We need to be able to select suppliers we can
trust

We need to be prepared when things go
wrong

LCenTisA

Our Strategy

Requirements Integrity
Management Assurance
e Divide the
problem into
chunks
Regulatory Reactive] v - ”
Approval Controls e Establish plllars
= to support our
i ‘ objectives
| Monitoring

ﬁ

LCenTisA

Use Existing Processes

Safety Assessment Process

e We already have
= alpetlion project and safety
e — management

e Documented in the
SMS

* Make sure they
properly cover
software

[System Definition .

LCenTisA

Requirements Management

e Review operational requirements
capture process

e Review safety requirements
capture process

* Review requirements
management tools (DOORS?,
Trac?, Access? Excel?)

e Requirement compatibility
process (non-interference)

LCenTisA

Integrity Assurance

 Probably the biggest challenge

e We are still developing the best
approach

e |nitially likely to include a mixture of:

— Checklists / supplier questionnaires

— Supplier audits
— Evaluation tables (score cards)

LCenTisA

Integrity Assurance contd.

e Series of workshops
T & - Key aspects to be expected of
o suppliers

— A product safety assessment has been
performed

— An established software quality system
is in place and results are measured

— Configuration management is in place

LCenTisA

Verification and Validation

e PlanV &V at the system boundary

g ° Test defences (pro-active controls)
' — |dentified during hazard assessment

— |.e. auxiliary supply operation, fail-over

* Inspect correctness of
documentation

e Validation of assumptions
e Validation of ‘known configuration’

LCenTisA

Training to Audit

e Risk based approach
e How to generally recognise good
and bad software suppliers
— Requirements management
— Coding standards
— Code reviews
— Unit tests
— Traceability
— Configuration management

e Site visit to a good ‘reference’
supplier

LCenTisA

Reactive Controls

 Not yet able to properly assure our
software

e Reactive controls can ensure safety
 Emphasis on failure conditions
e ATC defined procedures

 Training in unusual circumstances

* Planned workload reduction — flow
control?

LCenTisA

Measure Defects

 Not yet developed, but some thoughts:

e Existing occurrence scheme (RAT)
f—'_*—l — but overload with new software systems?
- e How to classify and measure ‘bugs’

— Most are probably trivial

— Many minor defects may indicate poor
quality

— What about ‘incorrect’ functionality?

LCenTisA

Measure Effectiveness

 Two trial projects

* Process to capture:
— Defects
b — ‘Incorrect’ functionality
| — Inconsistencies
— Operator satisfaction(?)

* As much detail as possible initially
e Establish a baseline
* Monitor improvements over time

LCenTisA

-1 Phased Introduction

e Phase 1: Action Plan

e Phase 2: Procedures, Templates and Training
 Phase 3: Two trial projects ALCMS and ASMGCS

e Phase 4: Performance review, critical systems
review

 Phase 5: Risk assessment for legacy equipment

LCenTisA

Regulator

Agree action plan
Approve SSAS procedures
Approve two trial projects

Opportunity to review and adjust
SSAS

On-going dialogue and approvals

LCenTisA

In Summary

Our approach is to break SSAS into smaller ‘chunks

Ensure we know our [safety] requirements

Learn how to assess suppliers and where to target V&V
efforts

Know that software fails, learn how to predict software failure
modes and plan to react

Keep measuring performance

Involve the regulator
ACcnTisa

