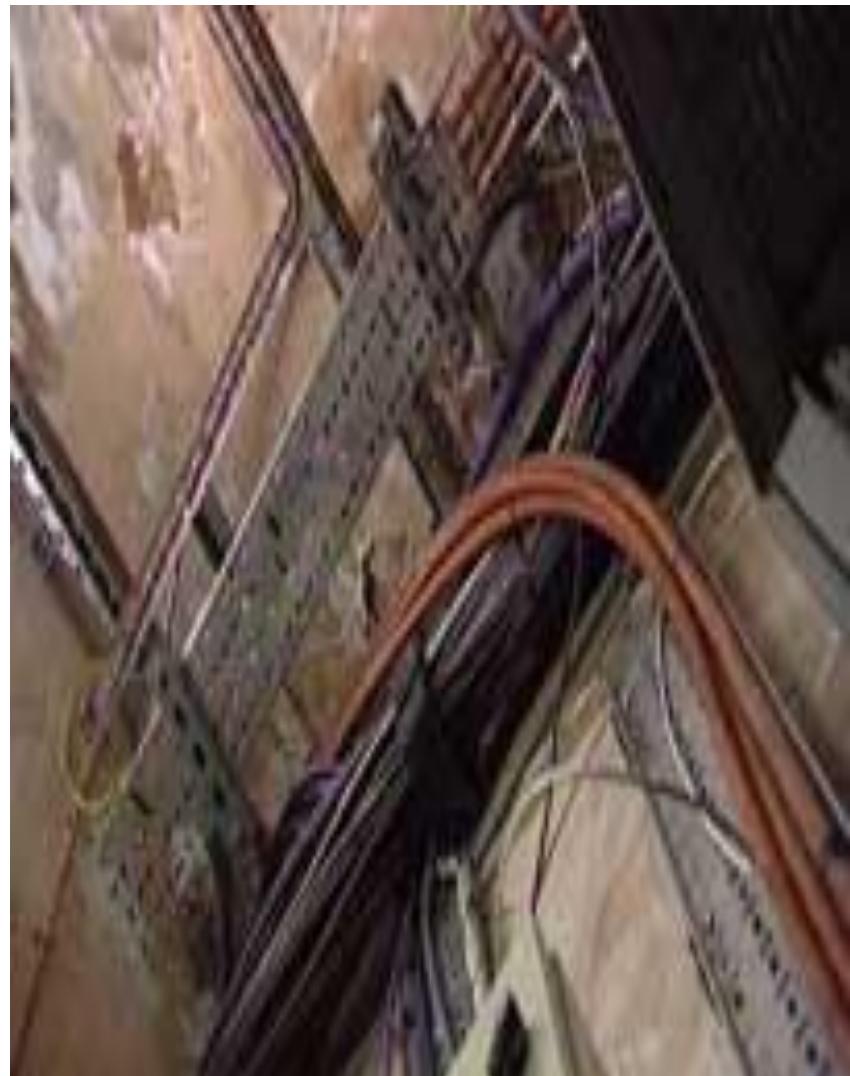


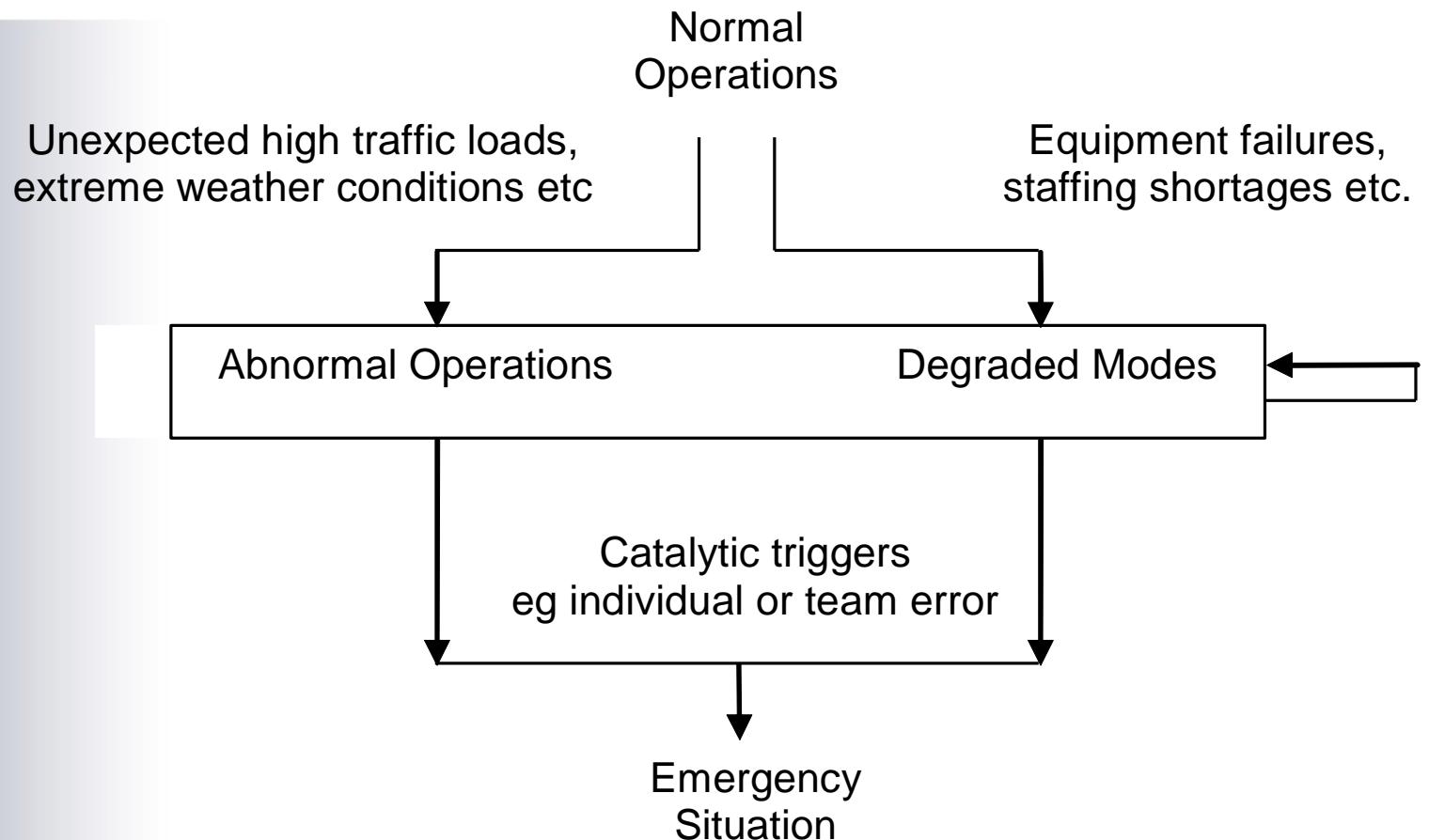
The Strategic Implications of Safety-Critical Software and Cyber-Security on ATM Operations

Prof. Chris Johnson,
School of Computing Science, University of Glasgow, Scotland.
<http://www.dcs.gla.ac.uk/~johnson>

Cyprus, 28th February 2012.



SHAO



What are Degraded Modes

Introduction to Degraded Modes

- Staff struggle to maintain levels of service.
- Failures lead to ad hoc solutions:
 - violate safety requirements;
 - Not supported by risk assessments.
- Key causes in Linate and Überlingen.
- Major concern with economic stringency:
 - Lack of technical competency in regulation?

Anatomy of the Incident (1)

14:25 UTC: Alarm Remote Control Unit

Technician to ACC, checks UPS

<Power Supply is out of tolerance >

UPS autonomy - **13 minutes**

14:30: Technician returns to PS Station.

Calls Head of department is **not** accessible.

14:32: In ACC again, Technician sees

UPS autonomy - 6 minutes

Makes **error** switch PS to 2nd UPS;

Under voltage but no over voltage protection.

Anatomy of the Incident (2)

14:35 UTC, In 10 minutes collapse of:

three quarters of Radar Data Displays,
one half of Flight Data Displays,
all radar inputs in DPS,
Controller Working Positions for Voice Comms
and AFTN connection with ARO & NOTAM.

Time	Destination
15:45	CANCELLED
15:50	CANCELLED
16:00	CANCELLED
16:00	CANCELLED
16:00	CANCELLED
16:10	CANCELLED
16:10	CANCELLED
16:15	CANCELLED
16:20	CANCELLED
16:30	CANCELLED
16:30	CANCELLED
16:30	CANCELLED
16:40	CANCELLED
16:40	CANCELLED
16:40	CANCELLED
16:50	CANCELLED
16:50	CANCELLED

14:40 UTC -

Technical Supervisor “We just need 30 minutes”.

14:45 UTC close FIR, CFMU traffic zero.

Edsger W Dijkstra (1930-2002)

Testing can prove the presence
of errors, but not their absence.

IRISH AVIATION AUTHORITY
UDARAS EITLIODHTA NA SEIREANN

**REPORT OF THE IRISH AVIATION AUTHORITY
INTO THE ATM SYSTEM MALFUNCTION AT DUBLIN AIRPORT**

CONTENTS

	Page
1. Background Information	1
2. Contingency Arrangements in Place	1
3. Arrangements in place with the System Supplier to provide support	2
4. Explanation of the problems which led to the malfunction	2
5. Measures taken to rectify the problem	4
6. Details of any Safety Issues Arising	6
7. Level of Communications between the IAA, the Airlines and Dublin Airport Authority (DAA)	6
8. Observations	7

- Busiest period of the year.
- Initial hardware failure:
 - Poor quality of service from LAN;
 - Slows flight data processing system.
- ATCOs cannot access data on radar targets:
 - including aircraft identification and type data.
- Capacity restrictions for safety reasons.

The Real Impact

Michael O'Leary, CEO Ryanair

- "The problem here is that you have an autonomous semi-state monopoly which doesn't care about its customers or the disruption to passengers,"

The Real Impact

Michael O'Leary, CEO Ryanair

- "The problem here is that you have an autonomous semi-state monopoly which doesn't care about its customers or the disruption to passengers,"
- "Send the buggers to Shannon, if it was a commercial company they would have done so,"

The Real Impact

- "The problem here is that you have an autonomous semi-state monopoly which doesn't care about its customers or the disruption to passengers,"
- "Send the buggers to Shannon, if it was a commercial company they would have done so,"
- "They're not on top of the job. We're talking about 25 arrivals and departures per hour. The air traffic controllers should be capable of handling this volume of flights".

Europe is Not Alone

- 2007: Atlanta FDPS switch configuration:
 - Salt Lake City fallback fails, cascading demand.
 - Manually data entry, 18+ hours to diagnose...
- 2008: Software failure in Atlanta again:
 - Processes flight plans for Eastern US.
 - 566 flight delays+
- 2009: Salt Lake City router circuit fault:
 - comms with Atlanta, plus 21 radar centres;
 - Bad weather adds 17 hours to restore...
 - Network owned/operated by Harris Corp.

- “Sisters Sharon Walker and Sheila James were taking their elderly mother to see their sister in St. Louis. Their 09.30 flight was delayed until 16:00...”
- “Sen. Charles Schumer said the country’s aviation system is ‘in shambles’...’the FAA needs to upgrade the system, these technical glitches that cause cascading chaos across the country are going to become a very regular occurrence...”

Potential Solutions?

1. Document the approach:
2. Identify potential system hazards:
3. Assess severity and probability:
4. Identify mitigation measures:
5. Implementation of mitigation
6. Verify intended risk reduction:
7. Communicate residual risks:
8. Risk management after deployment;

Frequency of Occurrence (over the life of an item)	Severity of Occurrence			
	CATASTROPHIC (I)	CRITICAL (II)	MARGINAL (III)	NEGLIGIBLE (IV)
FREQUENT (A) $P > 10^{-1}$	I-A	II-A	III-A	IV-A
PROBABLE (B) $10^{-3} > P > 10^{-2}$	I-B	II-B	III-B	IV-B
OCCASIONAL (C) $10^{-2} > P > 10^{-3}$	I-C	II-C	III-C	IV-C
REMOTE (D) $10^{-3} > P > 10^{-5}$	I-D	II-D	III-D	IV-D
IMPROBABLE (E) $10^{-5} > P$	I-E	II-E	III-E	IV-E

- Haddon-Cave report:
“If risk assessment has been conducted with proper skill, care and attention, the catastrophic fire risk ... would have been spotted”.
- Risk assessment:
 - “incompetence, complacency, cynicism”.
 - Documentation overwhelming;
 - Many trivial or irrelevant failure modes;
 - Supports only new procurements...

ROTARY-WING RISK ASSESSMENT MATRIX

1. SUPERVISION CMD/CONTROL		(Risk Value/Mission) VALUE		2. PLANNING GUIDANCE		(Risk Value/Time) IN-DEPTH		ADEQUATE		MINIMAL	
				Vague		3		4		5	
Parent Unit	1		2	Implied		2		3		4	
Attached	2		3	Specific		1		2		3	
3. CREW SEL/PC TIME IN		(Risk Value/Fit Hrs) TOTAL TIME		4. CREW SEL/PI TIME IN		(Risk Value/Fit Hrs) TOTAL TIME					
AO*		>2000	<2000	<1000	<500	AO*		>2000	<2000	<1000	<500
<25		3	4	5	6	<25		3	4	5	6
>50		2	3	4	5	>50		2	3	4	5
>50		1	2	3	4	>50		1	2	3	4
5. CREW SEL/ADD TIME IN		(Risk Value/Fit Hrs) TOTAL TIME		6. ALL CREW MEMBERS ARE CREW COORDINATION TRAINED							
AO*		>2000	<2000	<1000	<500	No			+2		
<25		3	4	5	6	Yes			0		
50		2	3	4	5						
>50		1	2	3	4						
7. ALL TASKS REQUIRED ON THIS MISSION ARE SUPPORTED BY THE UNIT MISSION ESSENTIAL TASK LIST (METL)				8. CREW ENDURANCE (Risk Value/Fit Hrs) QUALITY		>8 HRS	6-8 HRS	<6 HRS			
				OF REST		Field		6	10		
						Garrison		1	4	10	
				Add 2 for missions flown during the last half of the duty day.							
#Requires bn cdr approval.											
9. COMPLEXITY TYPE OF MISSION		(Value/Condition)		10. WEATHER** (Risk Value/Ceiling/Visibility)							
		VMC	VMC	NVG	IMC	D					
						HOOD					
							<1000/3	<700/2	<500/1	>1000/	
Multiship		2	6	4	NA	D		3	4	6	1
Sling load		2	3	5	NA	N		4	6	10	2
Stabo/Rappel		1	2	4	NA	NVG		3	4	8	1
Terrain Flt		1	3	2	NA						
Paradrop		2	2	NA	NA						
Routine		1	2	2	3						
NOE		2	8	4	NA						
MTP		3	5	NA	NA						
Maint Recovery		3	5	NA	NA						

ADDITIONAL COMMENTS

* Area of operations.

** Visibility values are given in miles.

ROTARY-WING RISK ASSESSMENT MATRIX

12. NVG CREW SEL/PC (Total NVG Time)					13. NVG CREW SEL/PI (Total NVG Time)				
>150	<150	<100	<50	<25	1	2	3	4	5
14. NVG CREW SEL/ADD (Total NVG Time)					15. PERCENT OF ILLUMINATION (NVG)				
>150	<150	<100	<50	<25	100-80	79-60	59-40	30-23	<23
					1	2	3	4	5
16. MOON ANGLE (NVG)					17. ADDITIONAL RISK FACTORS (NVG)				
90-70	69-50	49-30	<30						
					0	1	2	3	
RISK VALUES: DAY/NIGHT MISSIONS					RISK VALUES: DAY/NIGHT MISSIONS				
1. Supervision					12. NVG Crew Selection/PC				
2. Planning					13. NVG Crew Selection/PI				
3. Crew Selection/PC					14. NVG Crew Selection/Add				
4. Crew Selection/PI					15. Illumination				
5. Crew Selection/Add					16. Moon Angle (NVG)				
6. Crew Coordination Trained					17. Additional Risk Factors				
7. METL Task									
8. Crew Endurance									
9. Complexity									
10. Weather									
11. Additional Risk Factors									
TOTAL					TOTAL NVG MISSIONS				
					TOTAL DAY/NIGHT MISSIONS				
					TOTAL RISK VALUE NVG				

COMPUTATIONS DAY/NIGHT MISSIONS

Low Risk <16
Medium Risk 16-28*
High Risk >29**

COMPUTATIONS NVG MISSIONS

Low Risk <25
Medium Risk 25-40*
High Risk 41-50**
Extremely High >50***

* Medium-risk missions require approval of the company commander.

** High-risk missions require approval of the battalion commander.

*** Extremely high-risk missions require approval of the brigade commander.

ADDITIONAL COMMENTS

• US Army TC 1-210

Wider Applications: MATS Forms...

Regulatory Change Management Coordination Form

Note: The Regulator's representative should complete this form and send it back to the Quality and Safety Management section before the process of change is initiated. This form indicates clearly the level of information or involvement expected by the regulator in the change being proposed by the ANSP. This process is applicable only to Major Changes proposed by the ANSP.

Type of Change:

People	Equipment	Procedures
<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
Operational	Technical	Other

Brief Description of the Change

The Change process is expected to be initiated on:

The Regulator after analysing the presented change proposal requests:

- To be involved and invited for the safety assessment
- To be given a copy of the final document of the change
- Not to be involved and the ANSP may proceed
- More information

Name..... Date..... Sign..... (for Regulator)

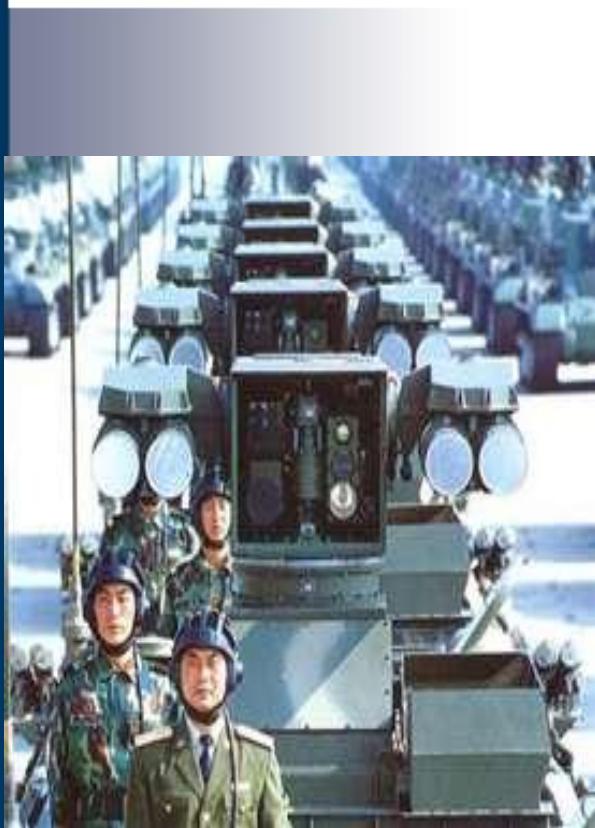
Name..... Date..... Sign..... (for ANSP)

- \$2.1 Billion En Route Automation Modernization
- Faults lead to 'missing' flight plans;
 - Again cannot transfer flight data to Atlanta etc.
 - Undermines ATCO confidence in system;
 - IBM fallback contract expired, Jovial...20 years old...
- Test deployment to Salt Lake City:
 - FAA spend \$14 million, still not working.
 - Salt Lake City simple compared to Chicago...

- Before, specialized infrastructures but now:
 - EGNOS: Smart Grids, Trains, ATM...
 - VOIP: Fire dispatch, space, ATM...
 - LINUX: NHS, UK Military, ATM...
- My students take these systems to pieces...
 - 4 recent viruses in ACC's on recent tour...
- Paranoia?

↑ Chelmsford (A 414)

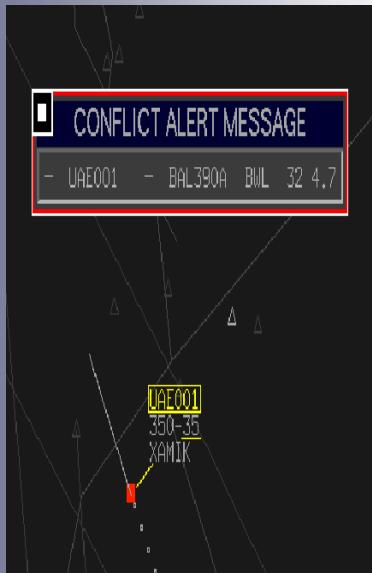
Chipping Ongar A 128


Brentwood
Kelvedon Hatch A 128
Industrial Estates

Secret Nuclear Bunker

“Go But You Will Never Work Here Again...”

- Trojan horse onto victim's machine;
 - Information forwarded to control servers;
 - reporting back to Chinese sources.
- Use of social media and Gmail:
 - Use of TOR anonymity server...
- Chinese government:
 - ATM as 'dual use' infrastructure;
 - promotes 'active defence' in cybersecurity;
 - UK and US govts both active in this area.



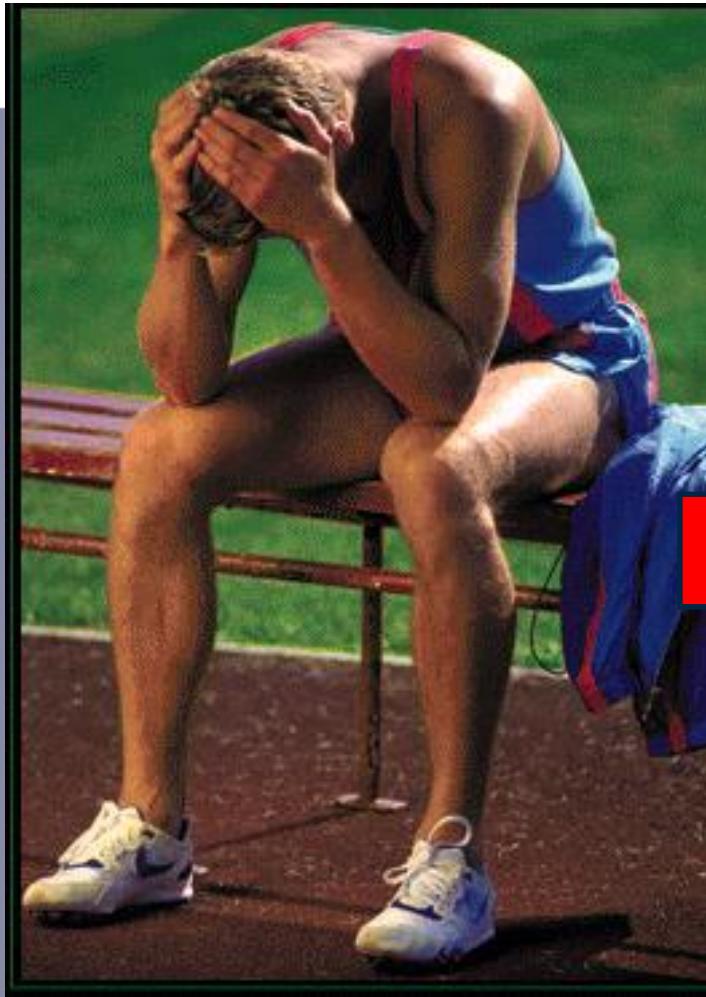
- W32.Stuxnet multi-component malware
 - Attacks Programmable Logic Controllers (PLCs);
- Stuxnet has up to 4 zero-day exploits:
 - ATM very vulnerable to this...
 - Unusual range of languages (C/C++) team?
 - Used 2 legit Taiwanese digital signatures...
- Command & control servers identified:
 - Located in Malaysia and Denmark;
 - 155 countries, 40,000 IP addresses.

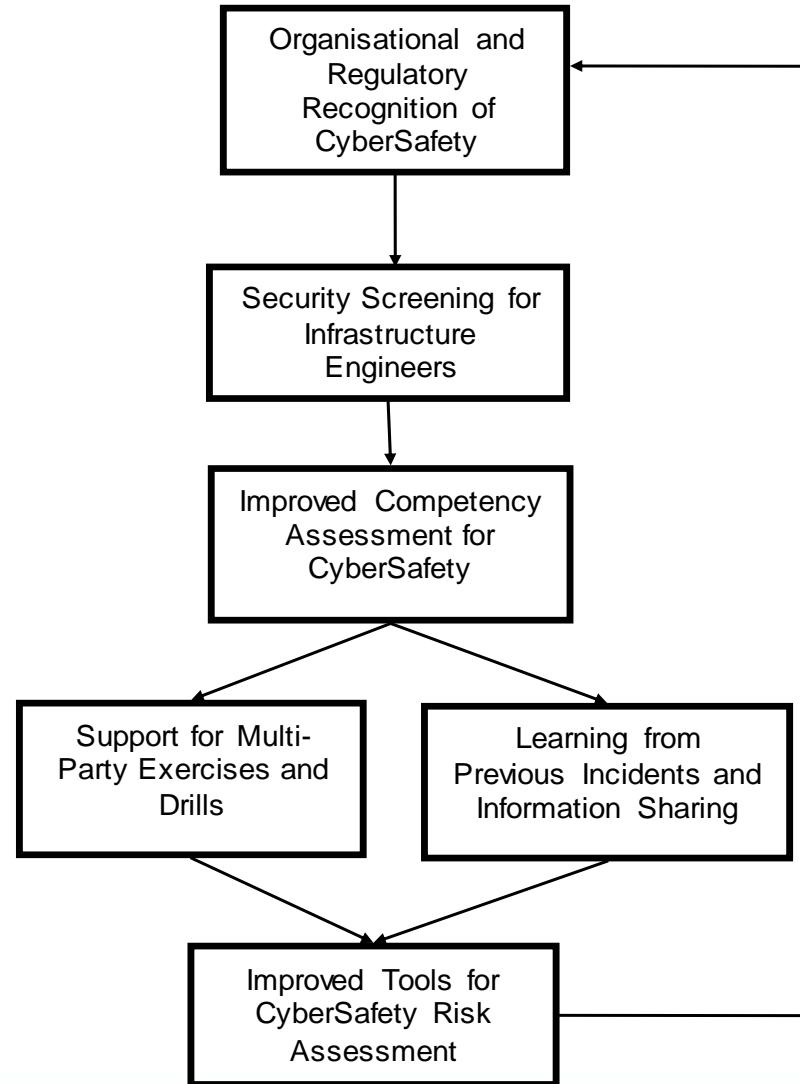
- Monitors frequency of attached
 - attacks systems operating 807-1210 Hz.
- Triggers a state machine to hide ‘sabotage’;
 1. Wait 13 days;
 2. Set maximum frequency to 1410 Hz;
 3. Wait 27 days
 4. Set maximum frequency to 2 Hz;
 5. Set maximum frequency to 1064 Hz;
 6. Go to 1.
- Clever... pathological failure modes.

keylogger:
Predator and Reaper GCS
Creech Airforce Base

“The FAA is ineffective in all areas including operational systems information security, future systems modernization security, management structure, policy implementation”.

“FAA is similarly ineffective in managing systems security for its operational systems and is in violation of its own policy”.


“They have performed the necessary for only 3 of 90 operational ATC computer systems, or less than 4%”


Paranoia?

- Coordinated attacks possible?
 - ATM is a dual-use infrastructure;
 - Chinese ‘active defense’;
 - Anonymity and plausible deniability.
- Who pays for security?
 - Private-public partnership?
- Many policies only exist on paper.
- Huge problem with complacency.

A Roadmap for CyberSafety

A Roadmap for CyberSafety

- Some potential actions:
 1. Contact CERTs/ENISA/NRAs;
 2. Audit security policy and hold a drill;
 3. Screening for staff and contractors;
 4. Improve training and competency;
 5. Assess safety risk of security violation...

- Europe lags behind the United States
 - no surveys of ATM security practices;
 - 50-60% ACCs in last 12 months;
 - Virus in primary/secondary systems.

**ANALYSIS OF CYBER SECURITY ASPECTS IN
THE MARITIME SECTOR**

November 2011

- ATM system complexity under SESAR:
 - Eg Software cannot be tested ‘completely’.
 - Bugs will remain and we must still be safe.
- Degraded modes, solution:
 - Rapid low cost risk assessment not just at procurement.
- Cyber-security, solution:
 - Act now, improve audit, training and drills.

Any Questions?

Time	Destination
15:45	CANCELLED
15:50	CANCELLED
16:00	CANCELLED
16:00	CANCELLED
16:00	CANCELLED
16:10	CANCELLED
16:10	CANCELLED
16:10	CANCELLED
16:15	CANCELLED
16:20	CANCELLED
16:30	CANCELLED
16:30	CANCELLED
16:30	CANCELLED
16:40	CANCELLED
16:40	CANCELLED
16:40	CANCELLED
16:50	CANCELLED
16:50	CANCELLED

