
Software Safety Assurance System

A NATS Perspective

Roger Dillon (roger.dillon@nats.co.uk)

Robert Granville (robert.granville@nats.co.uk)

ES2 WS3-11

22nd September 2011

© 2011 NATS Ltd

Agenda

» What is Software; where is it in ATM systems?

» What is Assurance; how does it differ from Development?

» The NATS Software Safety Assurance System

» Assurance approaches for different types of Software

» How much Assurance do you need?

» Using EUROCAE ED-109. Is it enough?

» Conclusion

© 2011 NATS Ltd

What is Software?

» The legal definition of software in (EC) No 482/2008,
“Commission Regulation of 30 May 2008 establishing a
software safety assurance system …”, is:
» ‘Software’ means computer programmes and corresponding

configuration data, including non-developmental software, but
excluding electronic items, namely application specific integrated
circuits, programmable gate arrays or solid-state logic controllers.

» This definition does not really go far enough; Ian
Sommerville (Professor of Software Engineering in the
School of Computer Science at St Andrews University,
Scotland) says:
» Software is not just the programs but also all associated

documentation and configuration data which is needed to make
these programs operate correctly.

» We have adopted the legal definition, but take
“corresponding configuration data” to mean “associated
documentation and configuration data”, as above.

© 2011 NATS Ltd

What is Software?

» Note: the legal definition of software has some explicit
exclusions.

» … excluding electronic items, namely application specific integrated
circuits, programmable gate arrays or solid-state logic controllers.

» We interpret this to be saying, “If you design something
using hardware techniques, and test it using hardware
techniques, it is not software, even if it is implemented
in a programmable device”.

» The Regulation identifies different types of software,
e.g. New development, legacy, bought-in…

© 2011 NATS Ltd

Different Types of Software

» What do you have in your equipment; is it new development,
legacy, or bought-in?

» It may be all three! For example you may be running new
Applications, using a legacy library, over a bought-in
Operating System and Middleware.

Hardware Platform

Application ApplicationApplicationApplication

Middleware (Application Programming Interface)

Operating System

Device Drivers, Protocol Stacks, etc.

Libraries

© 2011 NATS Ltd

Different Types of Software II

» Where is the software?

» It is everywhere, including the LAN Switches, Routers
and maybe even the workstation displays.

LAN Manager
LAN Manager

LAN Switches

Server Workstations

External Link External LinkRouters

Server

Could the software in
your LAN Manager
malfunction and take
out your operational
network?

© 2011 NATS Ltd

ATM Software

» ATM Software includes:

» Flight Data Processing

» Surveillance Data Processing

» Controller Workstation Management

» Communications Management

» And so on…

» Also critical to the operation:

» Traffic Prediction, Controller Rostering, etc.

» Periodic Maintenance Scheduling and Resourcing

» Aeronautical Information Generation & Promulgation Tools

» Embedded Software, for example in the Network Infrastructure

» And so on…

» We require Assurance (to different degrees) for all of
this software

© 2011 NATS Ltd

What is Assurance?

» Assurance is the basis for justified confidence in
something, for example that a system exhibits a
required property; it should be presented in the form of
logical arguments supported by pertinent evidence.

» You make a case; you are not proving anything.

» Software Safety Assurance is the demonstration that
the safety risks associated with the deployment of
software in our systems have been reduced to a
tolerable level for all stages of the operational lifecycle.

» This is to be achieved through a planned and systematic
set of activities that provide confidence in the software
conforming to constraints, requirements and, where
pertinent, standards.

© 2011 NATS Ltd

How does Assurance differ from Development?

» In almost every respect!

» Software development is the set of activities that results in
software products (Wikipedia definition); whereas

» Software assurance provides confidence in a software product's
suitability for its intended purpose.

» They are aligned however, the development processes
need to provide the evidence required to support the
assurance argument.

» Obtaining it retrospectively is difficult! The assurance argument
may need to define a level of detail for the development processes.

» They also overlap; some activities serve both purposes.

» For example the developer uses testing to show that the software
behaves correctly under specified conditions; this behaviour can
include the mitigations in which the assuror is interested.

© 2011 NATS Ltd

Structure of NATS Software Safety Assurance System

Note: SW01 is our
Regulator’s
software assurance
requirement; it is
published in their
CAP670 document

© 2011 NATS Ltd

© 2011 NATS Ltd

Software Safety Assurance Policy

» Identifies Principles (x 9) & Implementation Guidelines (x 8)

» Principles directly related to requirements of (EC) No. 482/2008

» Implementation Guidelines provide interpretation for addressing
Principles

» Traces the Principles, in the context of Implementation
Guidelines, to requirements of (EC) No. 482/2008, so as
to demonstrate compliance

» Provides a brief argument showing that, if the principles
are fulfilled, our Regulator’s CAP670 SW01 requirements
are also met

© 2011 NATS Ltd

© 2011 NATS Ltd

Software Safety Assurance Strategy

» Defines what is required to demonstrate that the safety
risk due to deploying the software is tolerable

» Identifies a ‘goal’; and a strategy to achieve that goal,
from which 18 requirements are derived

» Via an ‘assurance argument’

» Provides background and intent for each requirement

» Requirements addressed by:

» Extant processes (e.g. Safety Management System, Software
Development Processes)

» Allocation of Software Assurance Levels (NATS SSAS Process)

» Argumentation for Software Safety Assurance (NATS SSAS
Process)

© 2011 NATS Ltd

© 2011 NATS Ltd

Allocation of Assurance Levels

» Provides a process for deriving the Software Assurance
Levels
» Aligned with EUROCAE ED-109 Assurance Levels (see later)

» Describes a two stage process
» Stage 1: Identifies a ‘worst case’ Assurance Level, based on system

level information (used for planning)

» Stage 2: Allocates a Software Assurance Level, based on Software
Safety Requirements

» Would usually be stated to a supplier, but in some cases we may
just specify what documents need to be provided

» Stage 2 should be revisited in light of design decisions, changes, etc

» Assurance Levels are limited to AL3 and AL4 of ED-109
» AL5 & AL6 are “too easy” for ATM; AL1 & AL2, are “too difficult”

© 2011 NATS Ltd

© 2011 NATS Ltd

Argumentation for
Software Safety Assurance

» Refines the assurance arguments of the Strategy for
use by projects

» Provides the high level assurance argument using the
Goal Structuring Notation (GSN)

» Identifies primary sources of evidence
» Aligned with EUROCAE ED-109 evidence requirements

» Also suggests approaches for dealing with counter-
evidence and the shortfalls in evidence that occur in
real-world projects

© 2011 NATS Ltd

© 2011 NATS Ltd

GSN Argument

© 2011 NATS Ltd

Overview of the NATS SSAS Assurance Argument

© 2011 NATS Ltd

Training Provided Internally to NATS

» This is a complex subject; we introduced the SSAS to
those affected by provision of training:

» Introduction to the Software Safety Assurance System
» a single session aimed at managers and auditors

» Practitioners’ Guide to the Software Safety Assurance
System
» more than one session over several days for those who will

produce the assurance

» Other short supporting lectures and papers
to provide guidance on specific topics for a
more general, non-specialist, audience

» Software Safety Assurance intranet sub-web

© 2011 NATS Ltd

© 2011 NATS Ltd

Assurance Approach for Different Types of Software

» New (bespoke) software

» Developed specifically for NATS…

» …explicitly covered by NATS SSAS…

» …evidence required identified by assurance level.

» Software modified for NATS

» Requires a modified approach (see next slide)…

» COTS

» Assurance can be issue; but it depends what you mean by COTS…

© 2011 NATS Ltd

Assurance Approaches for Software Modified for NATS

» Option 1. Treat as new.

» When change is extensive, or very complex, it may be ‘best’, i.e.

less time & money, to assure the whole as if it were New Software.

» Option 2. Define an Assurance ‘Envelope’
» Software is initially assured over a range of something (e.g. over a

range of configurations)

» Assurance evidence is provided for that range…

» As long as software remains within this range after modification,
the assurance remains valid…

» Option 3. Limit Scope of Impact
1: Assure what has changed (as for New)

2: Assure what has been impacted by the change

3: Assure that there has not been any inadvertent regression

© 2011 NATS Ltd

COTS

» “COTS” is a term open to widely varying interpretations

» It represents a continuum

» From…high volume (many 1,000s), largely market independent

» e.g. Network Routers, Operating Systems

» …through…medium volume (many 100s), few defined markets

» e.g. Radar Sensors, Navigation Beacons

» …to low volume (10s), ATM market specific

» E.g. Voice Communications System, Surveillance Data Processor

» Our main concern is availability of assurance evidence

» High volume: rarely is any assurance evidence available; we are
not a key Customer, the supplier is not interested

» Medium volume: depending on the supplier, they may be prepared
to provide information

» Low volume: NATS likely to be a key customer, so opportunity to
work with supplier is a viable option

© 2011 NATS Ltd

Specific Guidance for COTS

» NATS and CAA have agreed a method of assurance

» Limited to equipment, where most onerous ‘integrity’ requirement is 1x10-5

failures per operational hour per sector

» Assurance is at the equipment level

» Any software within the equipment is considered assured

» Explicitly excludes assurance of the software in isolation

» Meets regulatory & legislative requirements – does not mean that it is safe!

» To use it, we need to meet five pre-requisites

» Safety Requirements are all expressed in terms of COTS equipment outputs

» Safety Objectives have been set at an acceptable level of risk

» The most onerous integrity requirement on the COTS equipment is no worse
than 1 x 10-5 (per operational hour)

» All equipment outputs mentioned in the Safety Requirements are observable

» Equipment in-service monitoring requirements are specified in the associated
System Safety Case

© 2011 NATS Ltd

COTS Guidance Elements (cont.)

» Integrity Assurance

» Testing [FAT, SAT, Soak, Training, Supplier Test]

» Test script, Test Results, Traceability Matrix, Evidence of use in training

» Field Service [equivalent usage]

» Same system/same platform, Earlier system/same platform, Similar
system/similar platform (OS/HW), Same system/previous platform
(OS/HW), Similar system by same supplier (Build statement, Observed
Failures, Environment)

» Supplier Experience and Reputation

» Same system type into ATC market (Evidence of Track Record)

» Personnel involved have expert knowledge (CVs)

» Supplier Software Design and Development Process

» Demonstration of appropriate process/standard (Certificate of
Conformance, Independent Audit)

» Knowledge of internal design features (Design documentation)

» Functional Assurance

» Testing [FAT, SAT]

» Test Scripts, Test Results, Traceability Matrix

© 2011 NATS Ltd

© 2011 NATS Ltd

© 2011 NATS Ltd

© 2011 NATS Ltd

© 2011 NATS Ltd

© 2011 NATS Ltd

© 2011 NATS Ltd

© 2011 NATS Ltd

© 2011 NATS Ltd

© 2011 NATS Ltd

© 2011 NATS Ltd

© 2011 NATS Ltd

© 2011 NATS Ltd

© 2011 NATS Ltd

© 2011 NATS Ltd

Customer and Supplier

» NATS has experience of safety in ATM

» Suppliers have experience of their systems
» Although system integrators may have little detailed knowledge of

the software in what they are integrating…

» real example: “CCTV camera system has no software”

» NATS experience is that best assurance comes where
strengths of both are used
» NATS develops assurance argument

» Suppliers deliver most of the assurance evidence

» Need to work closely together to ensure no duplication of effort -
and no gaps in the assurance!

» You can use the SSAS assurance argument structure to
divide work between the ANSP and their suppliers
» Some assurance may have to be supplied by all parties, e.g. fitness

for purpose of their Configuration Management system

© 2011 NATS Ltd

Amount of Assurance

»The Software Assurance Level identifies the
‘amount of assurance’ that is sufficient to
provide confidence that the risk is tolerable.

»For example, you have three building projects:

» A dog kennel – a failure may injure some family members

» A private house – a failure may kill someone and injure
several more people

» A skyscraper – a failure may kill many people and injure
many more

»Would you approach the assurance of all these
buildings the same way?

© 2011 NATS Ltd

Choice of approach

» There are three methods from which to choose:

» Do it yourself
» Analogous to a Low Integrity

Development Process

» Use a local builder
» Analogous to a Medium Integrity

Development Process

» Use an architect and a contractor experienced in
the required building systems
» Analogous to a High Integrity

Development Process

» Which would you use for each project?

© 2011 NATS Ltd

How to vary ‘Amount of Assurance’?

»The three main things that you can vary are:

»What you do, e.g.:
» Requirements → Code OR Requirements → Design → Code

» Analysis and focussed regression testing after a change OR 100%
retest

»How you do it, e.g.:
» Measure code coverage as statement coverage OR as branch

coverage

» Implement in C++ with bought-in libraries OR use a tightly-
controlled subset of a strongly-typed language

» The degree of independence of those who check
you have done it, e.g.:
» Test team drawn from your development team, as the project

focus changes OR from an independent external test company

» Use your suppliers’ own internal audits OR send in your auditors

© 2011 NATS Ltd

EUROCAE ED-109

» NATS has aligned its Software Safety Assurance System
Assurance Levels with those of EUROCAE ED-109

» ED-109 provides guidance, for each Assurance Level,
about the software development processes required to
produce the necessary evidence

» ED-109 provides a level of guidance that, if complied
with, will provide ~80% of the assurance evidence
required by the NATS SSAS…

» … but it does not provide everything needed by the requirements of
(EC) No. 482/2008 and CAP670 SW01 …

» … however, the NATS SSAS identifies the ‘missing’ elements and
provides additional requirements for:

» Functional Failure Analysis

» Staff Competency

© 2011 NATS Ltd

NATS SSAS and ED-109 Assurance Levels
Assurance

Level
ED-109 Assurance Level requirements

(SSAS additions in bold)

A
L5

• Software plans defined
• High-level software requirements defined and traceable to system level requirements
• Executable compliant and robust to high-level software requirements
• Adaptation data defined
• Test coverage of high-level software requirements achieved
• SCM and change control processes applied
• SQA processes applied
• Software Approval processes applied
• Tools qualified

Outside scope of SSAS

[Insufficient assurance for
Air Traffic Services]

A
L4

AL5 AND…
• Software development standards are defined
• High-level, derived software requirements and software architecture conform to

Software development standards
• Test procedures shown to be correct
• Test discrepancies addressed
• Test coverage of software structure achieved
• Software Architecture Functional Failure Analysis
• Competency of key staff addressed

A
L3

AL4 AND…
• Low-level software requirements defined, conform to design standards and traceable
• Source Code complies with architecture, conforms to coding standards and is

traceable
• Executable is compliant and robust with respect to low-level software requirements
• Test coverage of low-level software requirements is achieved
• 100% Statement coverage achieved
• Software Design Functional Failure Analysis

In scope of SSAS

A
L2

AL3 AND…
• 100% decision coverage demonstrated
• Many objectives satisfied with greater independence

A
L1

AL2 AND…
• 100% Modified condition / decision coverage demonstrated

Not used
[too costly]

© 2011 NATS Ltd

Functional Failure Analysis

» Functional Failure Analysis provides a means of
validating the system-level hazard identification
» Note that this is neither a Failure Modes & Effects Analysis nor a

Hazard & Operability Study, but combines elements from both

» For each operating mode of the software, Functional
Failure Analysis systematically addresses each function
to be implemented, and identifies credible malfunctions
using ‘prompts’
» These prompts were derived both from the behavioural attributes

specified in (EC) No. 482/2008 and from a UK Defence Standard

» The analysis assesses the effect of each identified malfunction at
the software boundary

» This approach captures effects arising from multiple
failures, or from unknown sources, and so is better than
Failure Modes & Effects Analysis, which only considers
one failure mode of one component at a time, and
assumes everything else is as required

© 2011 NATS Ltd

SYSTEMSYSTEM

People

Procedure

Equipment

HW

SW

List of Hazards

SYSTEM

People

Procedure

Functional

Hazard Analysis

IDENTIFIES

Equipment

HW

SW

HAZARD

HAZARD

© 2011 NATS Ltd

Identify
components and

modes of operation
from applicable
specifications

Software
Specifications

Start

FFA Process

Select an Operating
Mode for analysis

Identify
components and

modes of operation
from applicable
specifications

Software
Specifications

Start

For each operating mode

Select a Component
for analysis

Select an Operating
Mode for analysis

Identify
components and

modes of operation
from applicable
specifications

Software
Specifications

Start

For each operating mode

For each component

Identify failure
conditions by the

systematic
application of

prompts

Prompts

Select a Component
for analysis

Select an Operating
Mode for analysis

Identify
components and

modes of operation
from applicable
specifications

Software
Specifications

Start

© 2011 NATS Ltd

In conclusion…
The Benefits of a Software Safety Assurance System

» It gives us a higher level of confidence that we have
controlled the risk of deploying complex software in the
operational system

» It enables us to claim compliance to Commission
Regulation (EC) No. 482/2008, and provide assurance to
the National Supervisory Authority as required

» It enables relatively simple read-across arguments to
persuade our national Regulator that we have met their
requirements for software assurance (CAP670 SW01)

» Rather than spending time ‘re-inventing the wheel’ for
each project, we can concentrate on controlling risk…

Questions?

