

The Past is no Predictor of the Future

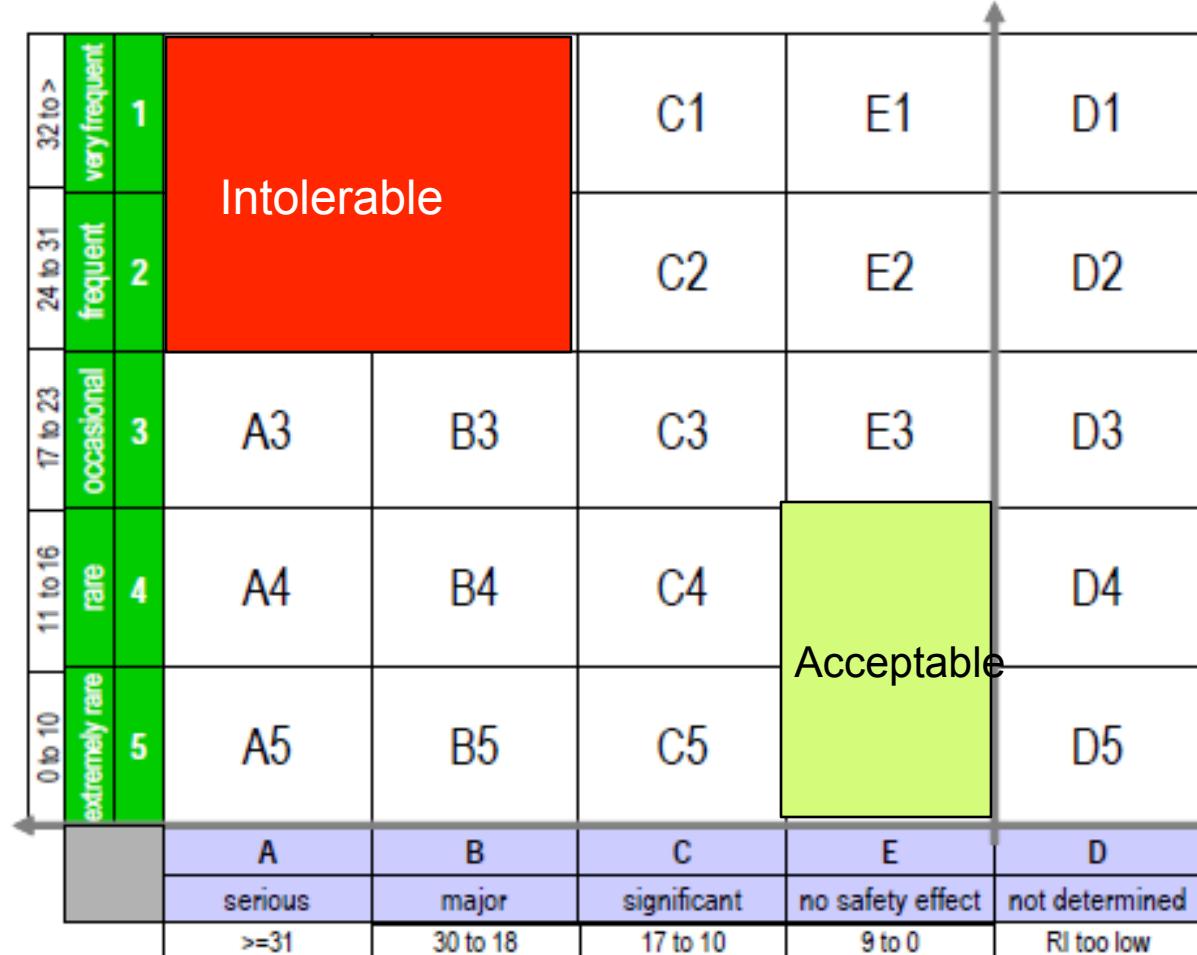
Black Swans, Artificial Intelligence, Cyber Security and the End of Risk Assessment in Air Traffic Management

**Belgocontrol, Friday 29th September 2017,
Prof. Chris Johnson,
School of Computing Science, University of Glasgow, Scotland.
<http://www.dcs.gla.ac.uk/~johnson>**

- New uncertainties in Air Traffic Management.
- “Black swan” events seem more common.
- Artificial Intelligence creates new possibilities.
- Cyber security is an increasing concern.

- Three challenges:
 - Black Swans, Artificial Intelligence, Cyber Security.

- Three challenges:
 - Black Swans, Artificial Intelligence, Cyber Security.
- One common concern:
 - The Death of Risk Assessment.

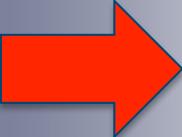

- Three challenges:
 - Black Swans, Artificial Intelligence, Cyber Security.
- One common concern:
 - The Death of Risk Assessment.
- One focus for technical innovation:
 - How do we sustain hazard analysis?
 - Can we engineer what “we know we don’t know”.

Or put another way

- In Air Traffic Management
- Past No Longer Valid for Predicting Future...
- So what can we do?

- SES CR 2096/2005 (1035/2011) ANSPs must reduce risk 'as far as reasonably practicable'
- 'risk' means the combination of the overall probability, or frequency of occurrence of a harmful effect induced by a hazard and the severity of that effect; (CE IR 1035/2011)
- 'hazard' means any condition, event, or circumstance which could induce an accident;

Risk Matrices


$$Risk = \sum_{h=1}^n (probability_h \times consequence_h)$$

- Depends on hazard analysis.
- Structured common sense:
 - FMECA – failure modes;
 - HAZOPs – guide words.

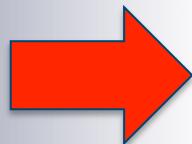
Existing Challenges

- Risk assessment fails for software:
 - Cannot estimate probability of bugs;
 - IEC61508, ED-153 rely on ‘tricks’;
 - Very few people understand SILs, SWALs etc.
- Risk assessment fails for human factors:
 - Very few are happy with HRA;
 - Some claim it is “psychologically vacuous”;
 - Largely determined by context (PSFs).
- Almost impossible to validate.

Challenges for Risk Assessment

		Governmental	Organisational	Individual	Technical
Black Swans	What does 'acceptably safe' mean for Black Swan events?	How to manage finite resources to plan for very rare events?	How to mitigate human contribution to risks we never experienced?	How to ensure sufficient range of 'black swan' scenarios are considered?	
Artificial intelligence	How to promote industry and innovation without exposing society to risk?	How to show systems that emulate human cognitive behavior acceptably safe?	How to help operators interact with autonomous systems?	How to test non-deterministic autonomous systems?	
Cyber security	How to protect public and dissuade other nations from attacking?	How much to invest when the risk changes and is uncertain?	How to assess the human contribution to security?	How to protect systems when the past is no predictor of future risks?	

- Hume's uniformity of nature;
 - Don't know chemical reason why emeralds are green;
 - Cause based on induction not reason/deduction.
- Leads to fundamental problem:
 - Assume you will only see white swans
 - Shows limits of learning from induction.


- Nassim Nicholas Taleb:
 - Statistician, journalist, author, academic;
 - Critic of conventional risk management.
- A black swan event:
 - deviates beyond normal expectation in situation;
 - hence is extremely difficult to predict;
 - tend to have a disproportionate impact.
- Make society robust against BS events:
 - “Convex tinkering” decentralized enquiry;
 - Better than directed research programmes.

- Accumulator battery based UPS:
 - few seconds before generator starts;
 - Lightning cause surges across national grid.
- Power keeps tripping, blows UPS protection;
 - Batteries keep being used with each surge;
 - Batteries not recharging between surges;
 - ANSP can gradually see UPS failing.
- Eventually, power trips with no UPS backup.

Challenges for Risk Assessment

	Organisational	Individual	Technical
Black Swans	What does 'acceptably safe' mean for Black Swan events?	How to mitigate human contribution to risks we never experienced?	How to ensure sufficient range of 'black swan' scenarios are considered?
Artificial intelligence	How to show systems that emulate human cognitive behavior acceptably safe?	How to help operators interact with autonomous systems?	How to test non-deterministic autonomous systems?
Cyber security	How much to invest when the risk changes and is uncertain?	How to assess the human contribution to security?	How to protect systems when the past is no predictor of future risks?

Safari File Edit View History Bookmarks Window Help

https://www.youtube.com/watch?v=n_aRuHkD5lc

F16 drone deployment Dod

YouTube Search

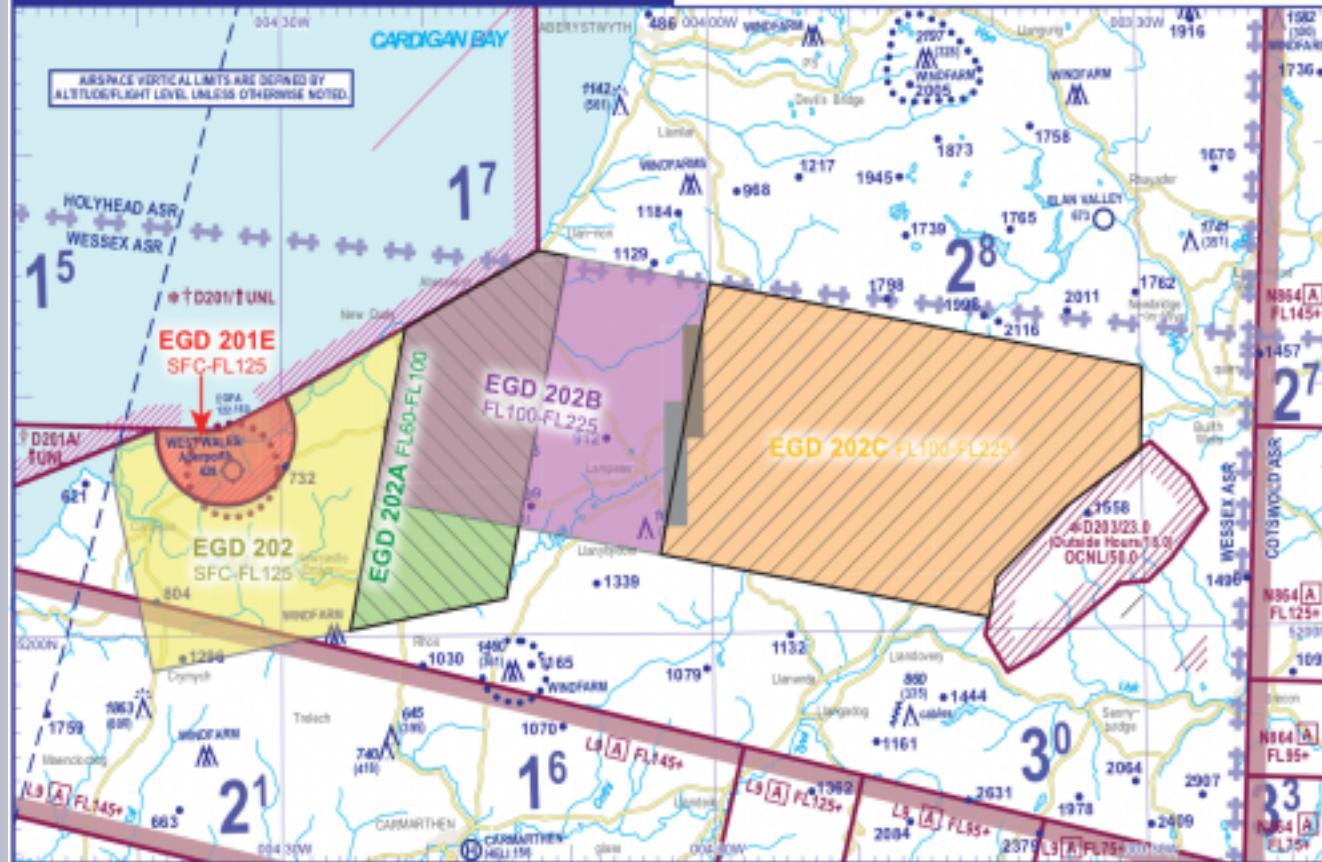
Vehicles release and communicate

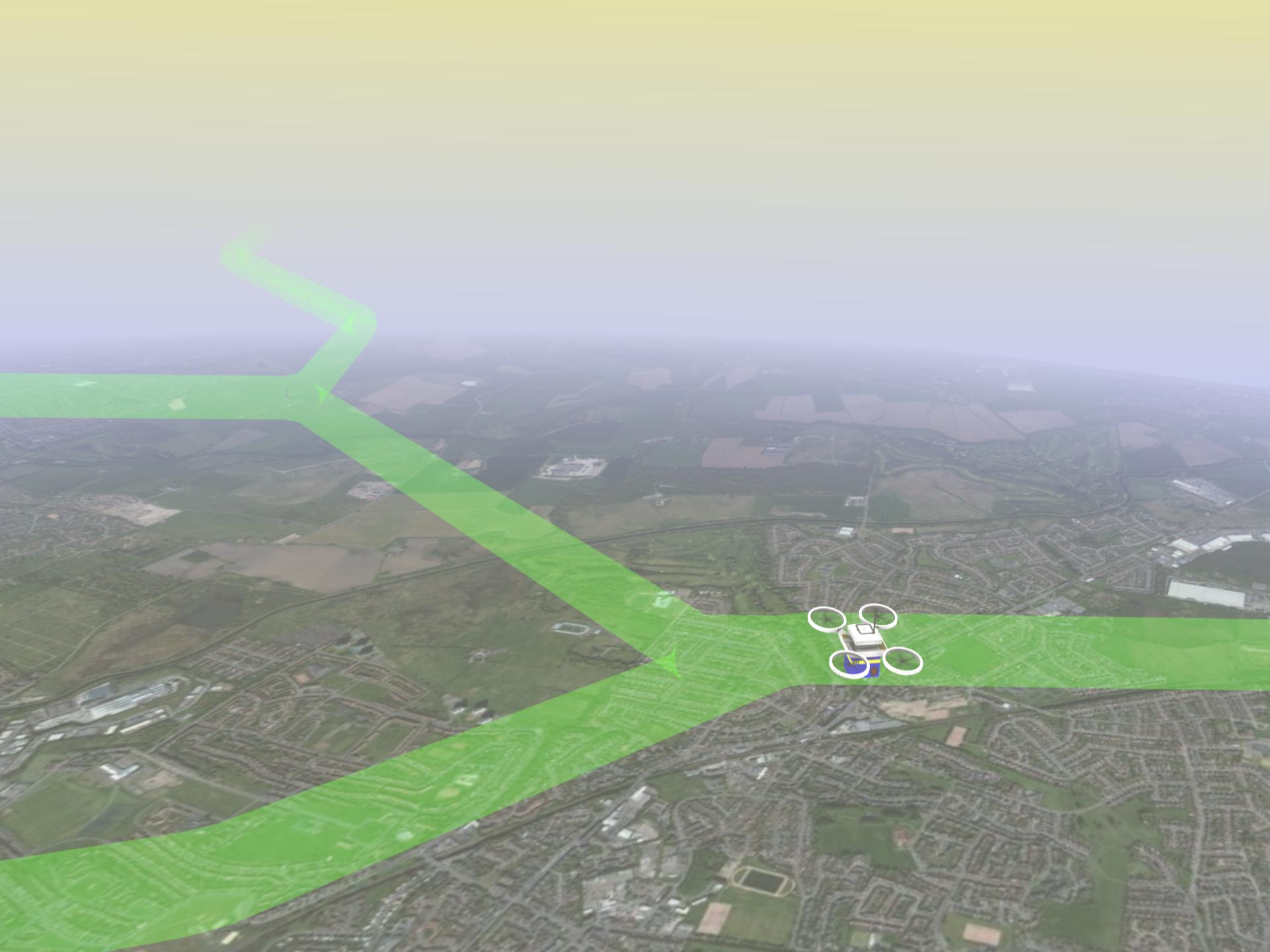
Navy Fighter Jets Release Swarming Perdix Micro-Drones

Gung Ho Vids

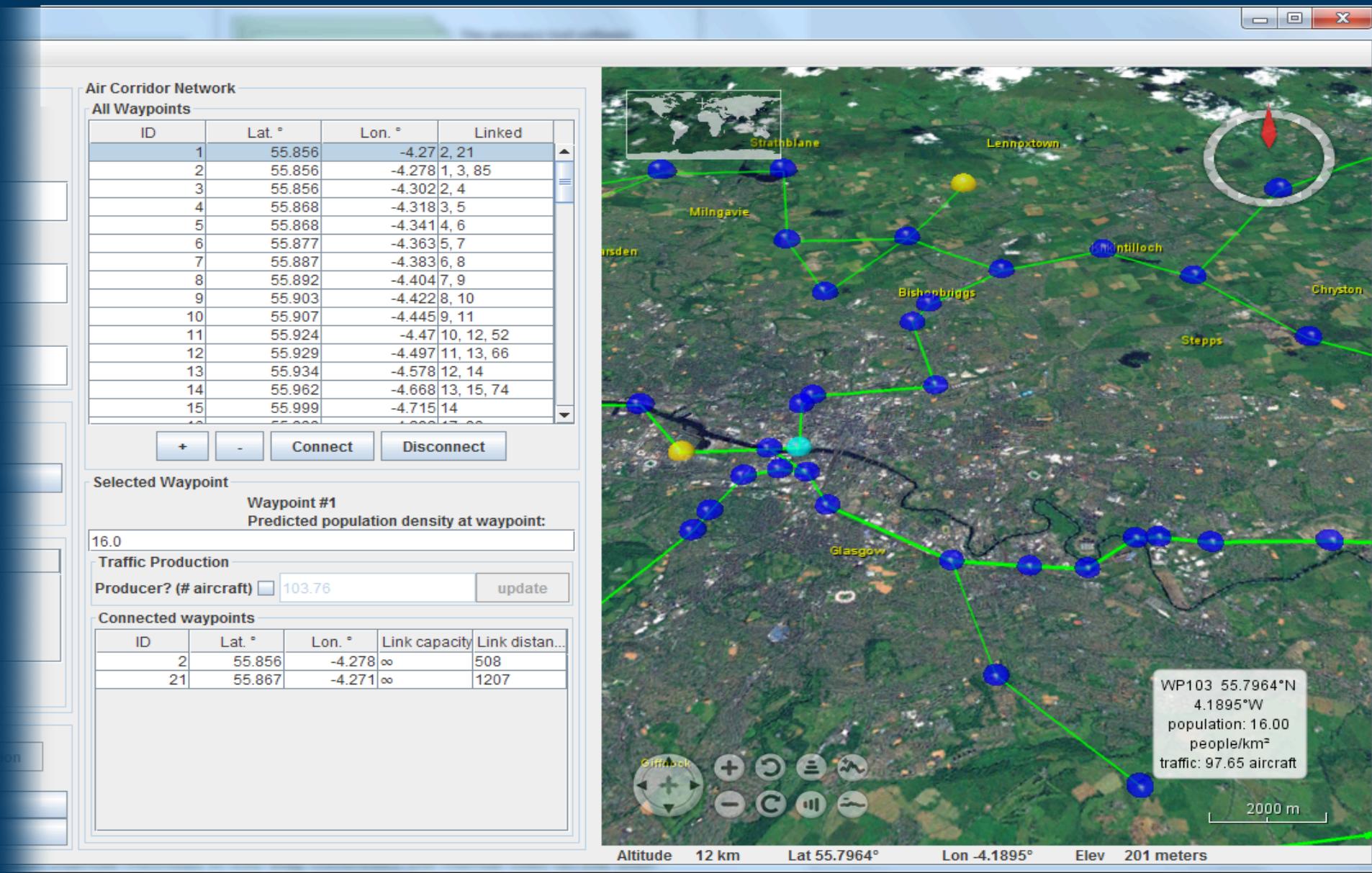
Subscribe 183K

24,422 views


Add to Share More


249 13

<https://www.youtube.com/watch?v=0WNNAu0u2I>


Danger Area 202 Complex

Note: Only relevant aeronautical/topographical detail is shown.
NOT FOR OPERATIONAL USE - PLANNING PURPOSES ONLY

High Density RPAS

- Notice of Proposed Rulemaking:
 - Certification of Small Unmanned Aircraft Systems (RIN 2120–AJ60).
- RPAS under control of ground pilot equivalent levels 1 & 2.
- Automated control for specific operations providing that the pilot retains 'line of sight' with the vehicle; levels 3 and 4.
- Full autonomy banned without specific waivers, restrict ops in experimental zones away from controlled airspace.
- 2015 1,000+ companies had FAA333 exemptions

Technique/Measure	SIL1	SIL2	SIL3	SIL4
1 Fault detection and diagnosis	---	R	HR	HR
2 Error detecting and correcting codes	R	R	R	HR
3a Failure assertion programming	R	R	R	HR
3b Safety bag techniques	---	R	R	R
3c Diverse programming	R	R	R	HR
3d Recovery block	R	R	R	R
3e Backward recovery	R	R	R	R
3f Forward recovery	R	R	R	R
3g Re-try fault recovery mechanisms	R	R	R	HR
3h Memorising executed cases	---	R	R	HR
4 Graceful degradation	R	R	HR	HR
5 Artificial intelligence - fault correction	---	NR	NR	NR
6 Dynamic reconfiguration	---	NR	NR	NR
7 Defensive programming	---	R	HR	HR

- Artificial intelligence:
 - Influenced by theories of human cognition;
 - Physiological models - neural networks;
 - Semantic models – formal reasoning.
- Machine learning:
 - More general term than artificial intelligence;
 - not necessarily linked to human cognition;
 - Generalize from training set...
- Eg Fuzzing and genetic algorithms.

Solution 1: Adversarial Approaches

- Manipulate the test set to be really hard.
- How do we define ‘hard’?
 - Traditionally testing insufficient for high SILs.
- Google and others use “the real world”:
 - Ethical issues placing public at risk;
 - How long do you conduct the studies?
 - Risk exposure implies 10^6 hours etc?

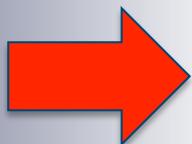
- Research topic for neural networks.
 - Show results stable for region of input.
- Huang et al 2017:
 - Scalable verification of multi-layer neural nets;
 - Assumes subset of hidden units in NN relevant;
 - Limits scope of classifier to be considered.
- Limits of region based verification:
 - Cannot imagine all possible inputs;
 - Limits on regions for stability are ad hoc/conservative.

- *Level 0*: Driver completely controls the vehicle at all times;
- *Level 1*: Individual controls are automated, such as automatic braking;
- *Level 2*: 2+ controls automated, eg adaptive cruise control + lane keeping;
- *Level 3*: Driver can fully cede control of all safety-critical functions in certain conditions. Car senses when conditions require driver to retake control and provides a "sufficiently comfortable transition time" (Tesla S);
- *Level 4*: Vehicle performs all safety-critical functions for the entire trip, with the driver not expected to control the vehicle at any time, including all parking functions. Google lack physical controls.

- Started in 2009, Sebastian Thrun:
 - Costs about \$150,000 per vehicle (Lidar).
- Safety performance:
 - 170,000 miles/ month, 125,000 autonomously;
 - Well over 1 million miles;
 - 23 vehicles/14 minor collisions on public roads;
- Only one incident where vehicle to blame;
 - Swerves to avoid sand bags and hits bus.

- Chrysler Pacific Minivans.
- Massive scale – 100 deployed.
- Twice surface area of San Francisco.
- Part of everyday life...
- Total Waymo test fleet 1000+

Known Limitations


- Pittsburgh Right and Brussels Left (Priority).
- Cannot use about 99% of US roads.
- Cannot obey temporary road signs.
- Trash, debris, pot holes are big concerns.
- What if humans request you to stop?
 - Most obviously with police officers...

- Germany:
 - Fed Highway Inst. Auton. vehicles dont meet existing law;
 - Each state grants exemptions ‘if there is a driver in the driver’s seat who has full legal responsibility’.
- France,
 - Testing zones with changes to driver training;
 - Allow ‘large-scale’ tests of self-driving cars/trucks.
- Sweden
 - Volvo ‘Drive Me’ test restricted areas around Gothenburg.

Challenges for Risk Assessment

	Organisational	Individual	Technical
Black Swans	How to manage finite resources to plan for very rare events?	How to mitigate human contribution to risks we never experienced?	How to ensure sufficient range of 'black swan' scenarios are considered?
Artificial intelligence	How to show systems that emulate human cognitive behavior acceptably safe?	How to help operators interact with autonomous systems?	How to test non-deterministic autonomous systems?
Cyber security	How much to invest when the risk changes and is uncertain?	How to assess the human contribution to security?	How to protect systems when the past is no predictor of future risks?

- CRAMM (UK) qualitative risk tool.
- EBIOS (FR) identifies residual risks.
- ISO 13335-2 guidelines for IT security.
- ISO 27005 information security risk management.
- ISO 31000 business risk management.
- IT-Grundschutz (D) Federal IT baseline protection
- MAGERIT (SP) maturity model
- MEHARI harmonized risk, excel support
- Etc.

- Amundrud, Aven and Flage (2017):
 - Risk = $f(asset_value, threat, vulnerability)$
 - Risk = asset \times threat \times vulnerability
 - Risk = threat \times (vulnerability \times consequence)
 - Risk = threat \times vulnerability \times consequence

- Threat_Scenario =
(Attacker, Asset, Method)
- Risk =
Probability(Threat_Scenario)
x Consequence(Threat_Scenario)

- Scenario 1:
Distributed Denial of Service on Airport's internet connection
- Scenario 2: Deep infiltration to steal data
- Scenario 3: Major integrity loss
- Scenario 4: Blended attack
- Scenario 5: Low Level Attack on APOC ICS infrastructure

The Cyber Arms Race?

- No confidence in cyber risk assessments:
 - Past does not predict the future (Hume);
 - We cannot trust induction.
- Series of examples relevant to ATM:
 - French bank's makefile;
 - Chinese hospital patients;
 - Stuxnet/Black energy attack;
 - UK VOIP attack.
- How worried should we be??

- New uncertainties in Air Traffic Management.
- “Black swan” events seem more common.
- Artificial Intelligence and machine learning.
- Cyber security is under increasing threat.

Challenges for Risk Assessment

		Governmental	Organisational	Individual	Technical
Black Swans	What does 'acceptably safe' mean for Black Swan events?	How to manage finite resources to plan for very rare events?	How to mitigate human contribution to risks we never experienced?	How to ensure sufficient range of 'black swan' scenarios are considered?	
Artificial intelligence	How to promote industry and innovation without exposing society to risk?	How to show systems that emulate human cognitive behavior acceptably safe?	How to help operators interact with autonomous systems?	How to test non-deterministic autonomous systems?	
Cyber security	How to protect public and dissuade other nations from attacking?	How much to invest when the risk changes and is uncertain?	How to assess the human contribution to security?	How to protect systems when the past is no predictor of future risks?	

Potential Solutions for Risk Assessment

		Governmental	Organisational	Individual	Technical
Black Swans	Regulatory requirements for contingency planning?	Foundations of resilience engineering.	Foundations of resilience engineering.	Common mitigations address multiple scenarios.	
Artificial intelligence	Waivers to regulations and segregation to reduce exposure.	Requirements for exhaustive testing and legal reporting framework.	Train humans on modes of interaction with AI systems?	Place bounds on non-determinism, use adversarial scenarios.	
Cyber security	NIS Directive and development of offensive weapons.	Simplified rapid risk assessment based on scenarios.	Audit internal provisions, control the supply chain.	Cyber situation awareness (develop offensive techniques)	

Overview: take Home Message

- Three “new” concepts/challenges:
 - Black Swans, Artificial Intelligence, Cyber Security.
- One common concern;
 - The Death of Risk Assessment:
- One focus for technical innovation:
 - How do we sustain hazard analysis?
 - How to engineer factors “we know we don’t know”.

- So far we kept it simple.
- Think about the interfaces.
 - AI applied to cyber security (fuzzing);
 - Cyber security of autonomous vehicles;
 - Using Black Swans in cyber weapons.
- How to assess risks of these innovations?

Any Questions?
