
Lessons From Web Operations
or

“Software, software, everywhere…and not a human to think.”

John Allspaw
Etsy

This is NOT optional.

Future

• Wherefore art thou tacit knowledge?

• Finding adaptive cycles

• Exploring how software engineers reason about their
systems and code

• 2010-present, CTO, Etsy.com

• 2015, Master’s Program, HF/Systems Safety, Lund
University

• Author of chapter on web ops in “HF/E in
Practice” http://bit.ly/1OkgLPP

http://bit.ly/1OkgLPP

Software Operations

“efficiently implementing automated abstractions”

(Guo, 2010).

Software Operations

“All companies are software companies.”

SMTP

• 220 Billion emails sent per day

• 120 per day sent by average business user

Dynamic
Fault

Management

Asinine Algorithmic Assumptions

Testing?

Fallacies of distributed computing
1. The network is reliable.
2. Latency is zero.
3. Bandwidth is infinite.
4. The network is secure.
5. Topology doesn't change.
6. There is one administrator.
7. Transport cost is zero.
8. The network is homogeneous.

1. There are always 24 hours in a day.
2. Months have either 30 or 31 days.
3. Years have 365 days.
4. February is always 28 days long.
5. If a process runs for n seconds and then terminates, approximately n seconds will

have elapsed on the system clock at the time of termination.
6. Time always goes forwards. The system clock will always be set to the correct

local time.
7. …

79.

Falsehoods Programmers Believe About Time

http://infiniteundo.com/post/25326999628/falsehoods-programmers-believe-about-time

http://infiniteundo.com/post/25326999628/falsehoods-programmers-believe-about-time

User as Operator as Author as Designer

Vast majority of software and architecture in critical business
path are adapted/adjusted/modified by the people who design it
and use it.

Side Note

Data (“big” or “little”)
• Our ability to record+collect data about our systems outstrip our ability

to make sense of it all.

• Trivial to collect, very difficult (if not impossible) to comprehend

• All-too-familiar topics:
• data overload/underload
• directed attention
• alert design

“No plan survives first contact with the enemy.”

“No plan survives first contact with the enemy.”

“perfect” software production traffic.
^ ^

A Story

nonce

A Story

A Story

j.mp/BlamelessPostmortems

Hey everybody -

Don’t do what I did. I tried to do X, but
because I didn’t know about Y, it was no
good.

It almost exploded everything.

So, don’t do: (details about X)

Love,
Joe

p.s. I changed X so that Y shouldn’t matter. Can
someone sanity check my work?

Adaptation

Horizontal Exchange

• Bootcamp and annual rotations

• Support rotations

• First Push Program

• Cross-checking, PostMortems, and PSAs

Confidence
• Automated testing

• Dark deployments

• % Rampups

• Staff-only

• Peer code review

• Exploratory testing

deployment

deployment

Continuous Deployment

Make Change-Making “Cheap”

• Feature/config flags

• Small changes done frequently > large changes done rarely

• Admission that all changes are not created equal

• Admission that there’s no such thing as deterministic
software

CASE: Trading Exchange

5 second
heartbeat

events
coming in

“I’m healthy, keep it coming…”

>>5 second
heartbeat

events
coming in
faster

“I’m….keep….”

manually sent
heartbeat at 5 seconds fake

heartbeat

CASE: Trading Exchange

CASE: Etsy

• Backfilled data in databases to repair a (relatively) minor
formatting issue

• Script went wrong (but fast!) and corrupted data

• Went to Hadoop (BigData) stack for recovery

Future For Software Operations

• Wherefore art thou tacit knowledge?

• Finding more adaptive cycles+patterns

• Exploring how software engineers reason about their systems
and code

Adaptation is normal.

Adaptation cannot be proceduralized.

Adaptation is really hard to see.

The End

