

Dedicated to innovation in aerospace

Safety aspects of electric flight operations

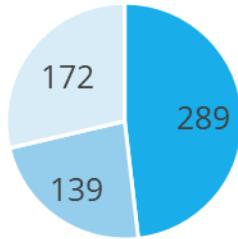
Arun Karwal & Marijn Giesberts

This NLR document is company confidential to its recipients and should not be copied, distributed or reproduced in whole or in part, nor passed to any third party without prior written consent of NLR.

Use, intentionally or unintentionally of any of the content, information, or services in this document in a manner contrary to the objective of this document is not allowed.

Mission

Royal NLR makes aerospace more sustainable, safer, more efficient and more effective. The innovative solutions and practical advice strengthen the competitiveness of the business community and contribute to solutions for social issues.



NLR PH-NLX – Pipistrel VELIS Electro (PIVE) Electric Research Aircraft, in operation since July 2021

- EASA-certified all electric Aircraft (CS-LSA)
- MTOW 600 kg
- Built in Slovenia
- Two seater
- Full battery charge 1:00 hr

MTOW 600 kg

- Airframe
- Battery/fuel
- Crew+payload

The pilot-in-command shall only commence a visual flight rules (VFR) flight if the aeroplane carries sufficient electrical energy used for propulsion for the following:

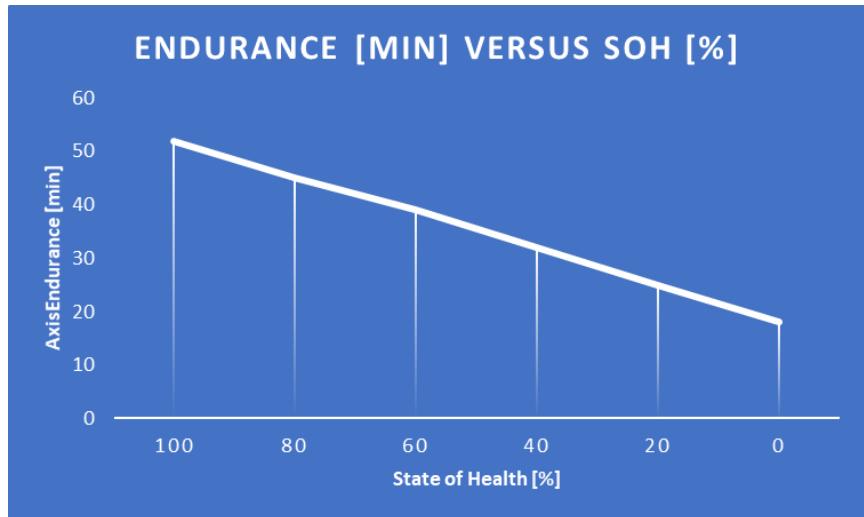
(1) by day, taking-off and landing at the same aerodrome/landing site and always remaining in sight of that aerodrome/landing site, to fly the intended route and thereafter for at least **10 minutes** at normal cruising altitude;

(2) by day, to fly to the aerodrome of intended landing and thereafter to fly for at least **30 minutes** at normal cruising altitude

(CAA-NL ref NCO.OP.125)

Aspects of all electric flight – Battery

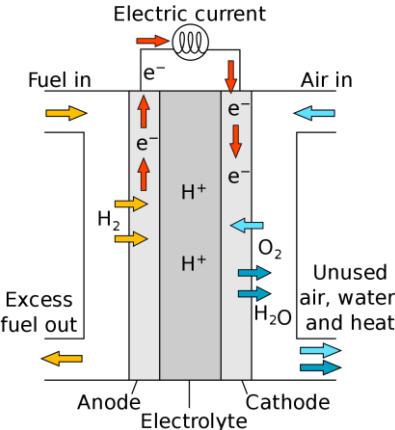
Battery use


- SOH and SOC – monitoring needed
- The charging and discharging process (BMS) - performance versus preservation
- High Amperage at high and low SOC
- Temperature effects
 - Battery performance
 - Battery temperature management

Storage

- SOC
- Physical loads
- Temperatures

Efficiency


- Efficiency all electric drive train is high (well-to-wheel 70-80%)

Aspects of electric flight - H2 PEMFC Fuel Cell

Components

- Fuel cell
- Hydrogen storage
 - Pressure tank (350-700 bar)
 - Cryogenic (liquid H₂ at -260C)
- Tubing
- Cabling
- Cooling

Efficiency

- Well to wheel 30-35 %, but ..
- H₂ has much a higher energy density than batteries

Safety study, objective and criteria

Triggered by the introduction of the PH-NLX to NLR fleet

Create a high-level knowledge base on the safety aspects related to the operation of electric aircraft.

Focused on the **safety aspects of manned, electric flight** based on the emerging technologies that are developed in near future (2020-2030)

Three concepts of operations. Scenario-based

Concept 1

Concept 2

Concept 3

2020-
50-250 kW

CS-VLA/LSA/23 (L1-2)

Fully electric

Li-Ion

30 NM

One or two motors

Training, GA (NCO)

2025-
250-2,000 kW

CS-23 (L3-4)

Fully electric

Li-Ion

300 NM

One or two motors

Air taxi (CAT)

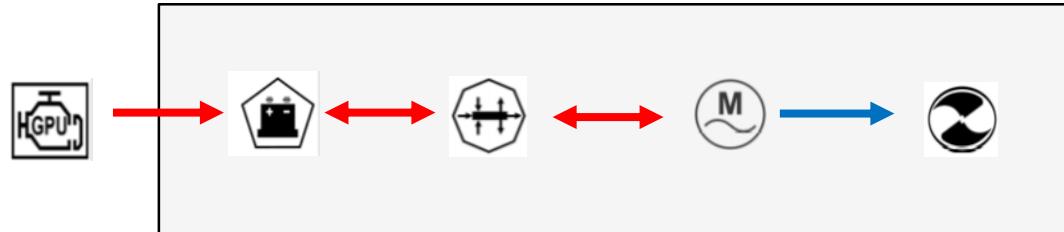
2030-
50-1,000 kW

TBD

Fully electric

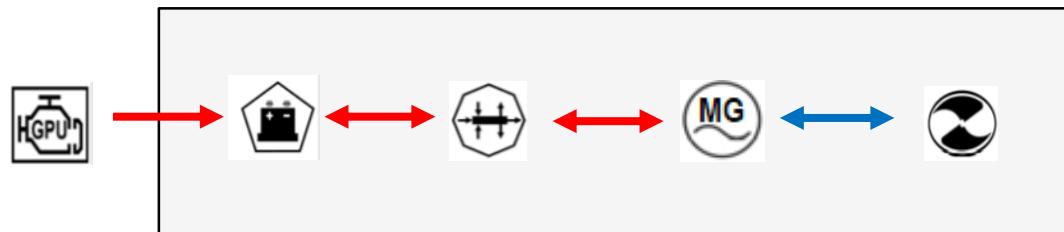
Hydrogen fuel cell

300 NM

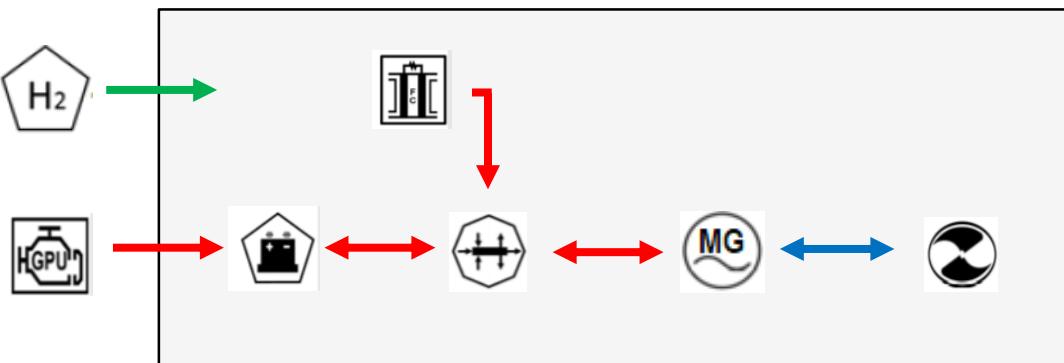

One or more motors

GA, Air taxi (NCO, CAT)

All-electric concepts (drive-train)


CONOPS 1 (2020-)

Energy stored in Li-Ion batteries
No regeneration


CONOPS 2 (2025-)

Energy stored in Li-Ion batteries
Power regeneration

CONOPS 3 (2030-)

Energy stored in hydrogen fuel cells
Power regeneration

Safety assessment methodology

For the safety assessment in this study it is assumed that aircraft certification and operator- and maintenance approvals have been completed.

Literature review

- NTSB
- AIAA
- NASA
- EUROCAE
- ...

NLR SME brainstorm sessions

- Battery
- Certification
- Regulatory developments
- Flight test operations
- Hydrogen safety
- Electric and hybrid propulsion

		Severity		
		HIGH	MEDIUM	LOW
Probability	HIGH	(1)	(2)	(3)
	MEDIUM	(2)	(3)	(4)
	LOW	(3)	(4)	(5)

5 scenarios and 2 attention areas

Risk assessment per scenario

Examples of included and excluded hazards

All electric (Concepts 1+2)	H2 fuel cells (Concept 3)	Excluded Hazards normally addressed during certification such as
<ul style="list-style-type: none">• Battery fire/thermal runaway• Motor failure• Toxic fumes• Personnel exposed to high voltage/current• Battery energy uncertainty• Battery charging safety• Energy regeneration hazards• Common mode failures• Battery aging• Battery performance change with temperature• ...	<ul style="list-style-type: none">• Fuel contamination• Fuel cell overheat• Unintentional release of H₂ or H₂O• Liquid H₂ low temperatures• Fuel cell fire• Fuel cell explosion• Asphyxiation• ...	<ul style="list-style-type: none">• EMI• Arcing• BMS design• Lightning strike protection• ...

Safety Card – Electric Flight

Risk/Attention areas

All Users

Pilots

Certifying Staff

Airport

Charging

Be aware of limitations and procedures related to battery charging!

When guidelines are not followed, batteries may damage or catch fire during a charging cycle!

Reserve

Always be vigilant about remaining battery capacity and how that translates into range/endurance!

Indicated remaining capacity may be less reliable.

Hot or cold?

Be aware of temperature limitations!

Battery performance, and therefore aircraft performance, depends on temperature. This is relevant both in hot and cold weather conditions.

High V/A systems

Know your emergency procedures!

Failure conditions of high amperage electrical systems may have unexpected consequences in other aircraft systems.

Maintenance

Apply caution when working on electric power train components!

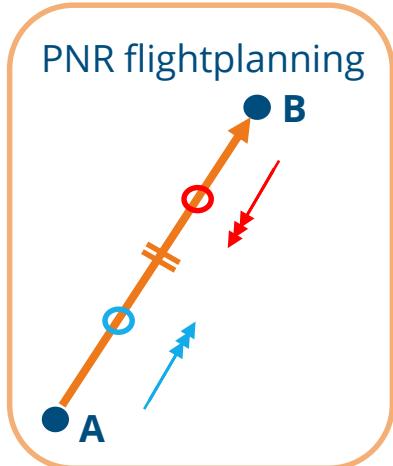
Arcing, short circuit, damage and fire are hazards when working on electrical systems and batteries.

Fighting an electrical fire

Know the fire fighting procedures for Li-Ion fires!

A Li-Ion fire cannot be extinguished, it needs to be contained and cooled. When using liquids for cooling, be aware of electroshock hazard.

Hydrogen powered aircraft


In the future aircraft will use hydrogen propulsion and fuel cells to store energy. These new technologies will also introduce new procedures and limitations.

In-service operational experience gained

- Tour of The Netherlands
- Battery SOH degradation
- Certification issues
- Range/endurance issues
- Fire hazard
- Commercial viability of electric flight

Tour of The Netherlands

- EHRD-EHGG and EHRD-EHBK, August 2021
- 11 airfields visited in 4 days
- Supervised charging
- Simulated commercial turn-arounds

Tour of The Netherlands, lessons learned

- A LOT of interest in electric flight !
- 380V charging points mostly limited to 16A (6 kW)
- Proprietary charger, supervised charging requires qualified ground crew
- Flight planning (range, weight) is critically dependent on wind, and SOH
- Difficult to keep to a schedule due to many variables
- High pilot workload during turn-around

Evolution of regulations

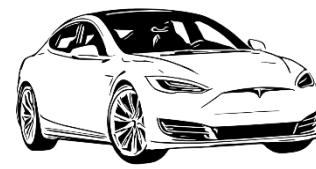
Commission
Regulation (EU)
965/2012

Commision
Regulation (EU)
2021/1296

ED Decision
2022/005/R

5 October 2012

- Consolidation of Air Operations Regulatory framework


4 Augustus 2021

- Amending and correcting Regulation (EU) No 965/2012 as regards the requirements for fuel/energy planning and management.
- The new fuel/energy planning and management requirements should support innovation and allow for the smooth integration of new technologies into the air operations domain. Therefore, the term '**'fuel/energy'** should be used instead of the term 'fuel', wherever appropriate, to accommodate operations with aircraft that use other energy sources than conventional hydrocarbon-based fuel.*

25 March 2022, effective 30 October 2022

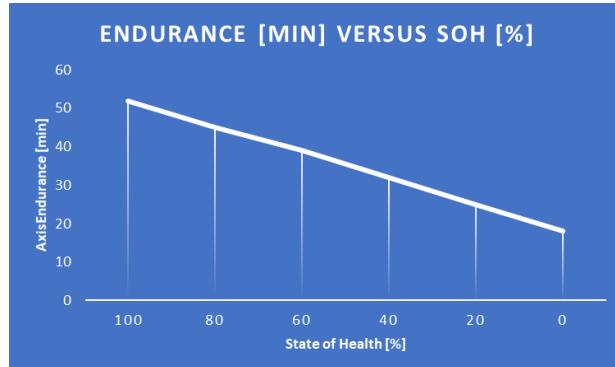
- Proposes that air operators be allowed to reduce the amount of fuel carried during operations, thereby reducing the CO2 emissions of the overall flight and environmental impact of the flight.
- 3 million tons CO2 reduction per year (baseline 2015 flights).
- Fuel schemes detailed in new AM/GM.

Charging times

	Concept 1 Part NCO	EV	Concept 2 Part CAT
<ul style="list-style-type: none"> • Capacity • Max power • Cruise power • Charging power • Time to charge • Ratio charge : use 	<ul style="list-style-type: none"> • 25 kWh • 58 kW • 30 kW • 12 kW AC (380V/32A) • 2 hrs • 4:1 	<ul style="list-style-type: none"> • 100 kWh • 500 kW • 25 kW • 12 kW AC • 150 kW DC • 8 hrs (AC) • 30 min (80% DC) • 2:1 (AC) / 1:8 (DC) 	<ul style="list-style-type: none"> • > 500 kWh ? • 250-1,000 kW • > 200 kW • 250 kW DC ? • 2 hrs ? • 2:1 ?

Reserve energy, in-service experience

Reserve



Always be vigilant about remaining battery capacity and how that translates into range/endurance!

Indicated remaining capacity may be less reliable.

Recent EHRD runway blockages for 30 minutes or more:

- 15 May 2019
- 31 October 2020
- 17 April 2021
- 23 February 2022 (*)
- 7 March 2022 (*)

RFF category based on aircraft dimensions

Fighting an electrical fire

Know the fire fighting procedures for Li-Ion fires!

A Li-Ion fire cannot be extinguished, it needs to be contained and cooled. When using liquids for cooling, be aware of electroshock hazard.

Firefighters tackling an EV blaze said they had to use 40 times more water than for a regular vehicle fire because of the car's lithium battery cells.

"Normally a car fire you can put out with 500 to 1,000 gallons of water," Fire Department Division Chief Thayer Smith said, "but with an EV it may take up to 30,000-40,000 gallons of water, maybe even more, to extinguish the battery pack once it starts burning and that was the case here."

Aircraft Category for Fire Fighting	Aircraft Overall Length	Aircraft Maximum Fuselage Width
1	< 9 m	2 m
2	9 m ≤ length < 12 m	2 m
3	12 m ≤ length < 18 m	3 m
4	18 m ≤ length < 24 m	4 m
5	24 m ≤ length < 28 m	4 m
6	28 m ≤ length < 39 m	5 m
7	39 m ≤ length < 49 m	5 m
8	49 m ≤ length < 61 m	7 m
9	61 m ≤ length < 76 m	7 m
10	≥ 76 m	8 m

Source: skybrary.aero

Electric aircraft: RFF category based on battery capacity?

Critical Category for Fire Fighting	Quantity of Water	Quantity of Complementary Extinguishing Agents	Minimum Number of Aircraft Fire-fighting Vehicles	Total Discharge Capacity	Aircraft Category for Fire Fighting	Electric aircraft battery capacity (example...)
1	230 l	45 kg	1	230 l/min	1	-
2	670 l	90 kg	1	550 l/min	2	-
3	1200 l	135 kg	1	900 l/min	3	50 kWh
4	2400 l	135 kg	1	1800 l/min	4	100 kWh
5	5400 l	180 kg	1	3000 l/min	5	200 kWh
6	7900 l	225 kg	2	4000 l/min	6	400 kWh
7	12100 l	225 kg	2	5300 l/min	7	800 kWh
8	18200 l	450 kg	3	7200 l/min	8	1 MWh
9	24300 l	450 kg	3	9000 l/min	9	1,5 MWh
10	32300 l	450 kg	3	11200 l/min	10	> 1,5 MWh

Source: skybrary.aero

RFF
1→3

RFF
2/3→6/7

© Gordon Leggett

Commercial operations with electric aircraft ?

- Selection of aerodromes
 - Charging facilities
 - RFF requirements
- Energy reserves
 - Taxi + Trip + Cont + Alternate + FRF
 - SOH degradation
- Charging time versus hot-swapping of batteries

Dedicated to innovation in aerospace

Fully engaged

NLR - Netherlands Aerospace Centre

Anthony Fokkerweg 2
1059 CM Amsterdam
The Netherlands

p) +31 88 511 31 13
e) info@nlr.nl [i \) www.nlr.org](http://www.nlr.org)

Voorsterweg 31
8316 PR Marknesse
The Netherlands

p) +31 88 511 44 44
e) info@nlr.nl [i \) www.nlr.org](http://www.nlr.org)