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Executive summary

This report is one of the principal outcomes of a project between the European Union Aviation

Safety Agency (EASA) and Daedalean AG, which took place within the scope of an Innovation

Partnership Contract (IPC) between July 2020 and May 2021.

This project is a follow-up to a first IPC between EASA and Daedalean, which resulted in

the publication of a 104-page report in March 2020, titled Concepts of Design Assurance for

Neural Networks [CoDANN20].

First Daedalean/EASA IPC (2020) The main goal of the first project was to investigate the

possible use of systems employing machine learning/neural networks in safety-critical applica-

tions, looking in particular at potential challenges with respect to trustworthiness (see [EAS20,

p.14]), such as the ability to provide performance guarantees, as well as the applicability of

existing guidance such as [ED-79A/ARP4754A; ED-12C/DO-178C].

In addition to in-depth discussions around these aspects, an important outcome of [CoDANN20]

was the identification of a W-shaped development process (Figure 1) adapting the classical V-

shaped cycle to machine learning applications.

Requirements allocated to ML
component management

ML requirements
verification

(Sub)system
requirements & design

Independent data
and learning verification

Data
management

Learning process
management

Model
implementation

Learning process
verification

Model
training

Inference model
verification & integration

(Sub)system
requirements verification

Figure 1: W-shaped development cycle for Learning assurance from [CoDANN20].
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CoDANN II (2021) The goal of this second project was threefold: investigate topics left

out in [CoDANN20], mature the concept of Learning assurance and investigate remaining

trustworthy AI building blocks from [EAS20]. A conclusion was reached on each of the following

topics:

• Implementation and inference parts of the W-shaped process (hardware, software and

system aspects), encompassing:

– The development of machine learning models with the numerous challenges that

can arise compared to classical software development.

– The deployment of models on the operational platform, with the need for complex

hardware to perform neural network inference.

In both topics, a fundamental requirement is to ensure that performance guarantees are

not lost in the transition from the development environment to the operational environ-

ment. This advances the discussion from theoretical considerations on learning assurance

in [CoDANN20] to practical ones.

• Definition and role of explainability within the scope of both Learning assurance and

human-machine interaction. Techniques have been identified as well as their contributions

in Learning assurance and Human-Machine Interaction.

• Details on the system safety assessment process: out-of-distribution detection, runtime

monitoring, uncertainty estimation, and integration with filtering/tracking. This con-

cludes discussions on the integration of neural networks into complex systems and their

evaluation in safety assessments.

As in the first project, the majority of the considerations are generic to machine learning/neural

networks. They are exemplified throughout with the use case of a neural network-based visual

traffic detection system. This is a different use case from [CoDANN20] in order to explore

further the new type of applications that will soon reach the aviation market thanks to AI/ML

technology.

Thanks to the first Daedalean/EASA IPC [CoDANN20] and the current project, all steps of the

W-shaped process have now been investigated. Points of interest for future research activities,

standards development and certification exercises have been identified, and they will contribute

to stir EASA efforts toward the introduction of AI/ML technology in aviation.

⋄ ⋄ ⋄

The European Union Aviation Safety Agency (EASA) is the centerpiece of the European

Union’s strategy for aviation safety. Its mission is to promote the highest common standards of

safety and environmental protection in civil aviation. The Agency develops common safety and

environmental rules at the European level. It monitors the implementation of standards through

inspections in the Member States and provides the necessary technical expertise, training and

research. The Agency works hand in hand with the national authorities which continue to carry

out many operational tasks, such as certification of individual aircraft or licensing of pilots.

Daedalean AG is building autonomous flight control software for civil aircraft of today and

advanced aerial mobility of tomorrow. The Switzerland-based company has brought together

expertise from the fields of machine learning, robotics, computer vision, path planning as well as

aviation-grade software engineering and certification. Daedalean has partnered with incumbent

avionics manufacturers including Honeywell Aerospace and Avidyne to bring to market the first-

ever machine-learning based avionics. The company has developed an onboard visual awareness

system demonstrating crucial early capabilities on a path to certification for airworthiness.
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Chapter 1

Introduction

Machine Learning (ML), a method to develop Artificial Intelligence (AI) systems from data, is

currently revolutionizing several fields of computer science [Sej18], and presents major opportu-

nities for the aviation industry, both for human assistance and towards autonomous operations.

In February 2020, the European Union Aviation Safety Agency (EASA) published a first AI

Roadmap [EAS20] aimed at creating a risk-based “AI trustworthiness” framework to enable

future AI/ML applications and support European research and leadership in AI. This roadmap

is in particular guided by the European Commission’s “Ethics and Guidelines on Trustworthy

AI” 2019 report [EGTA].

Figure 1.1: Illustration of EASA’s AI Roadmap, [EAS20, p.13].

EASA’s roadmap distinguishes several levels of AI (from human assistance, to aid to decision,

collaboration and autonomous systems), with a phased regulatory approach aligned with in-

dustry. The initial phase targets the development of a first set of guidelines, while the second

one would use these to develop regulations, acceptable means of compliance and guidance

material. A third phase would adapt these outcomes to future developments in AI, towards

fully autonomous operations.

1.1 The first Daedalean/EASA IPC (CoDANN)

The first Daedalean/EASA Innovation Partnership Contract (IPC), titled Concepts of Design

Assurance for Neural networks (CoDANN), was one of the starting projects of the first phase

of the roadmap.
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Figure 1.2: Trustworthy AI building-blocks from [EAS20, Figure 5].

The main goal of the 10-month joint project (July 2019-March 2020) was to

“examine the challenges posed by the use of neural networks in aviation, in the

broader context of allowing Machine Learning (ML) and more generally Artificial

Intelligence (AI) on-board aircraft for safety-critical applications.”

The focus was put on the Learning Assurance and AI Trustworthiness analysis building-blocks

of the first EASA AI Roadmap (see Figure 1.2), and some of the major outcomes were (see

the Executive Summary of [CoDANN20]):

• The definition of the W-shaped Learning Assurance process (see Figure 1) as a founda-

tion for future guidance for machine learning applications. It provides an outline of the

essential steps for Learning Assurance and their connection with traditional Development

Assurance processes.

• The investigation of the notion of generalization of neural networks, with related aspects

such as data quality, training, evaluation, verification, etc.

• The approach to accounting for neural networks in safety assessments, on the basis of a

realistic use case.

This was discussed thoroughly in a 135-page report, with a 104-page public extract published

in March 2020 [CoDANN20].

Most of the considerations are generic and apply to all supervised learning1 methods, but

particular attention is given to (deep) neural networks, as they represent one of the techniques

that are both most promising and most complex.

The work happened in parallel with other efforts such as SAE G-34/WG-114 or [UL-4600], and

the report contains a comparative survey of those [CoDANN20, Chapter 3]. One year after

the publication of the first IPC, a whitepaper has also been published by the DEEL certification

workgroup [Wor21] on similar topics, with compatible findings.

The report has been cited multiple times in relevant publications since then (e.g. [For+20;

Wor21; Asa+20; Dev+21; Sch+20]).

1Supervised learning aims at finding an approximation (model) f̂ : X → Y to a complex (i.e. that cannot

be easily implemented) function f : X → Y by using data pairs (x, f (x)), or (x, f (x) + δx ), where δx is a small

quantity representing noise in collecting values of f (e.g. from measurement/annotation).
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1.1.1 The W-shaped process

The steps of the W-shaped process (illustrated in Figure 1) are:

• Requirements management (top left) and Requirements verification (top right), covered

by traditional system development [ED-79A/ARP4754A].

• Data management, where datasets for training, validation and evaluation are created

according to the requirements. This might include collection, annotation/labeling, and

processing.

• Learning process management, which includes all the steps required prior to the training

(next step): metrics, strategy to use for model selection, models/architectures to eval-

uate as well as the setup of software/hardware environment where the actual training

takes place.

• Model training is self-explanatory, driven mostly by the previous step, in an iterative train-

ing/validation cycle, to find a best-performing model (architecture/hyperparameters).

• Learning process validation, where the outcome of the previous step, a single trained

model, is evaluated on the test dataset2. This evaluation includes understanding gener-

alizability (performance guarantees) and failure cases, which can then be fed to a safety

assessment.

• Model implementation, which includes all the steps required to run the model obtained

on the software/hardware platform, that usually differs from the development platform.

• Inference model verification and integration3, where the desired properties of the deployed

model are verified, including:

– Typical software verification aspects such as execution time, memory/stack usage,

etc.

– Performance (in the sense of accuracy) guarantees with respect to metrics from

requirements. If these are derived from the trained model, it is in particular fun-

damental to understand the impact of the transformation in the previous step, as

well as that of the development software/hardware platform (whose impact goes

beyond writing and compiling source code).

• Independent data and learning verification4, meant to close the data management life-

cycle, ensuring that data was correctly used throughout, and corresponds to the require-

ments (completeness/representativity, see [CoDANN20, Chapter 6]).

In addition to the use cases discussed in the two Daedalean/EASA IPCs, the W-shaped process

has been successfully tried in other aviation-specific applications (as reported in [Eur21]).

1.2 Scope of the CoDANN II project

The goal of this second Daedalean/EASA joint project, that took place between July 2020 and

May 2021, was to continue developing the Learning assurance and Trustworthiness analysis

2Note that the phrasing in [CoDANN20, p.44] is somewhat misleading: the training/validation iterative

process takes place in the previous phase (model training), with no involvement of the test set. While the

evaluation of multiple models on the test set are possible, they must be carefully controlled to avoid invalidating

generalization guarantees.
3Called Inference model verification in [CoDANN20]. This was changed in [EAS21].
4Called Data verification in [CoDANN20]. This was changed in [EAS21].
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building-blocks of the EASA AI Roadmap (Figure 1.2), as well as introducing the Explainability

one. The main topics addressed are:

• Implementation and inference, to refer to parts of the W-shaped process related to the

software and hardware platforms where models are developed (training, evaluation) and

deployed.

The first project focused mostly on considerations around generalization/performance

guarantees abstracted from the development and deployment environments. However,

these two environments are often complex platforms that bring additional risks to evaluate

and mitigate in the context of the new paradigm of machine learning, where data and

code drive the function instead of code only.

• Explainability, which is one of the other “AI trustworthiness” building-blocks from EASA’s

AI Roadmap (see Figure 1.2). “Explainability” and “interpretability” bear many differ-

ent (sometimes even conflicting) meanings between authors, groups and fields. Two

important steps required towards regulatory guidance are to:

– Survey existing techniques fitting in the field of “explainability/interpretability” of

machine learning/neural networks.

– Identify possible gaps in the concept of learning assurance that these techniques

could fill, if any, and discuss possible requirements.

• Integration of machine-learning subcomponents into a complete system.

The first project analyzed how machine learning models integrate into a full system, with

generic considerations as well as the use case of a landing guidance system. In partic-

ular, [CoDANN20] discussed how machine learning generalization guarantees, comple-

mented by runtime monitoring, filtering etc., would fit into a safety assessment process.

Three topics already present in [CoDANN20], but that were deemed to deserve additional

considerations due to their importance are:

– Runtime monitoring/Out-of-distribution detection. Ensuring that the input data fits

the right distribution (the one identified during development from requirements) is

an essential prerequisite to guarantee performance on unseen data.

– Integration with filtering/tracking, including categorization of errors and measure

of uncertainties.

– DAL level assignments between the neural network and other components, with

definition of the hazards and Failure Conditions to which the neural network con-

tributes.

Use case A new use case of visual traffic detection is presented, complementing the visual

landing guidance from [CoDANN20], helping mature both the concepts from [CoDANN20]

and the new ones developed therein.

This system developed by Daedalean has been selected for three main reasons: the safety

benefit such functions may bring to future airborne application, the complexity of the use

case representative of future AI/ML products, and last but not least because this new kind of

application is a potential technological enabler of more autonomous aircraft.

Outcome Thanks to the first Daedalean/EASA IPC [CoDANN20] and the current project,

all steps of the W-shaped process have now been investigated. Points of interest for future

research activities, standards development and certification exercises have been identified, and

they will contribute to stir EASA efforts toward the introduction of AI/ML technology in

aviation.
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1.3 EASA’s First usable guidance for Level 1 ML applica-

tions

Building on [CoDANN20], the current project, other industry collaborations, and internal work,

EASA opened for consultation in April 2021 a first usable guidance for Level 1 machine learning

applications [EAS21]. The document

“presents a first set of objectives for Level 1 Artificial Intelligence (’assistance to

human’), in order to anticipate future EASA guidance and requirements for safety-

related ML applications.

It aims at guiding applicants when introducing AI/ML technologies into systems

intended for use in safety-related or environment-related applications in all domains

covered by the EASA Basic Regulation (Regulation (EU) 2018/1139).

[. . . ]

It will serve as a basis for the EASA AI Roadmap 1.0 Phase II (’AI/ML framework

consolidation’) when formal regulatory development comes into force.”

Several use cases are reviewed, including the one from [CoDANN20] (visual landing guidance).

Link with CoDANN II The development of EASA’s concept paper was run in parallel with

the current project.

Both activities benefited from each other; the discussions in this project contributed to en-

rich the development of EASA’s guidance with the experience from actual AI/ML product

developers.

As the CoDANN II project is now finalized, it is foreseen to integrate the relevant aspect of

the visual traffic detection use case as an example in the updated EASA Level 1 Guidance.

1.4 Outline of the report

As in [CoDANN20], the majority of the report is generic to machine learning applications in

safety-critical settings (with a focus on neural networks).

However, a specific use case is first presented in Chapter 2 to help the reader contextualize the

more abstract discussions in the other chapters. Visual traffic detection was chosen for the

interest of the application and inherent challenges. This is also one of Daedalean’s products.

Chapter 3 investigates the two environments implicitly present in the W-shaped process (learn-

ing and inference environments) and their interactions:

• Separate sections discuss the specificities and potential risks of each, followed by an

overview of what is required to pass from the first to the second.

• Then, a survey of the most important optimizations often needed to use neural networks

in real time is provided, again outlining possible challenges.

• Finally, the last sections discuss possible ways to ensure that performance guarantees are

maintained for the operational model/platform despite potential major transformations

and risks related to the learning environment.

Chapter 4 starts with a discussion on the polysemy of the words “explainability” and “inter-

pretability”, noting through academic surveys that they have many, sometimes conflicting,
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meanings. A definition that is generic enough to encompass all the works of regulatory interest

is adopted, therefore avoiding the pitfall of creating yet another definition. A categorization of

techniques from academic literature is presented, before surveying major methods and working

groups, as well as criticisms and issues of some methods. Given this information, the chapter

concludes a reflection on the usefulness of these techniques, and requirements that should be

set. Two major uses are identified, matching with [EAS21, Section 4]:

• Strengthening the data–learning assurance link (in particular ensuring that the operating

space has been correctly identified), during development and post operations.

• Human-machine interaction, during operations.

Chapter 5 treats various topics around safety assessment:

• Out-of-distribution detection and runtime monitoring, elaborating on Chapter 6 from [Co-

DANN20].

• Integration with classical filtering/tracking, and the required information to do so on the

errors made by the neural network component.

• Connected to the previous items, the estimation and validation of uncertainty of neural

networks.

Chapter 6 returns to the use case in the context of the topics discussed in the previous chap-

ters (implementation and inference, Concepts of Operations. . . ), with a particular focus on

integration into a full system and the related safety assessment.

Finally, Chapter 7 provides a summary of the findings, suggested guidelines, and discusses

remaining elements that might be required for certifying Level 1 applications (in the context

of [EAS20]), as well as possible next steps and future work.

The notations and conventions from [CoDANN20] will be used throughout.

A note about this document

This document is a public version of the original report.

Some details from the original have been removed for confidentiality reasons (appendices and

where indicated in the text).

Interested parties are welcome to contact ipc-feedback@daedalean.ai.
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Chapter 2

Concepts of Operations

The application described in these Concepts of Operations (ConOps) is a vision-based system

that detects, tracks and classifies airborne objects such as fixed-wing aircraft, rotorcraft and

drones. It is designed to be integrated within an aircraft to support a Detect and Avoid (DAA)

function. Figure 2.1 shows an example output in a form used during development.

While an existing DAA function, based for example on Traffic Collision Avoidance System

(TCAS), might provide information on cooperative traffic and relies on other aircraft to have

complementary systems, this system requires nothing to be installed in other aircraft allowing

non-cooperative traffic to also be identified. This system is intended to supplement an existing

DAA system, not replace it.

The use case presented here is to help the reader anchor the considerations in the following

generic chapters in a practical application. At the end of the report, Chapter 6 will return to

the use case to apply and illustrate the previous chapters.

Figure 2.1: Illustration of Daedalean’s visual traffic detection system. A 12-megapixel image

captured from a camera on an aircraft contains multiple aircraft, successfully detected by the

system and displayed as a zoomed-in inlet on the left, in addition to some false positives.

Note that this is an internal demonstration user interface, not a proposed display for use by an

aircraft’s crew.
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2.1 System description

One or more avionics-grade cameras are used to capture images of the surrounding space,

with as little obstruction as possible. The captured images are then processed by the system

to extract all objects (cooperative or non-cooperative traffic) present in the field of view, with

relevant information such as category, time-to-collision, etc. This information can be fed to a

pilot/operator and/or another system (e.g. to perform an avoidance maneuver when necessary).

Like the system analyzed in [CoDANN20], the proposed visual detection system is a combina-

tion of a camera unit, a pre-processing component, a neural network and a tracking/filtering

component. See Figure 2.2.

Camera 4290x2800px 512x512px Detection (bounding box)

Detection
confidence

Target
position

Pre-
processing

Tracking/
filtering

CNN

Figure 2.2: Architecture overview.

For the purposes of this document, only one camera is considered, assumed to be fixed on

the nose of the aircraft and pointing forward. In practice, the system will likely have multiple

cameras for improved field-of-view, robustness, and redundancy.

The next paragraph describe the system outputs more precisely, as well as the different com-

ponents of the system.

2.1.1 Outputs

The system outputs the following timestamped information at a fixed frequency (e.g. 1 Hz),

for consumption by other aircraft systems and/or aircrew (see also [DO-365B; DO-387]):

• A list of current tracks, each with the following information:

Item Units

Track identifier Increasing integers

Category Fixed-wing, rotorcraft, drone. . .

Time-to-collision (or τmod) Seconds

Relative position Meters

Size Meters

Output type Measured or extrapolated

Corresponding uncertainties –

Target crop (see Section 6.5) –

A track is a series of measurements that should correspond to a single airborne object

in the field of view.

• Status information indicating the health of the system.
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2.1.2 Sensing/pre-processing

Sensor The camera unit is assumed to have a global shutter and output 12-megapixel RGB

images at a fixed frequency.

Pre-processing The pre-processing component applies a number of operations to the raw

camera image data in order to improve the suitability of the image for subsequent processing.

This includes operations such as:

• Masking out parts of the image that should not be used for further processing (for

example, image regions showing parts of the aircraft itself rather than the environment);

• Normalizing the image channels to a fixed mean and standard deviation;

• Splitting full resolution images into 512 × 512 tiles for the neural network to process

(batching, usually constrained by hardware memory limitations).

This is done with classical software (i.e. no machine learning).

2.1.3 Neural network

A machine learning model operates on the input space X consisting of 512× 512 RGB images

obtained after the pre-processing (normalized tiles).

Its output space Y consists of sets of bounding boxes (that should each correspond to an

airborne object), with axis aligned to the image, each having:

Quantity Properties Range

Target bounding box Normalized coordinates of top-left corner [0, 1]2

Normalized width and height [0, 1]2

Target category Among a fixed list See Section 2.1.1

Confidence value [0, 1]

A Convolutional Neural Network (CNN) as shown in Figure 2.3 is a natural choice for this

application.

Usually, the “confidence value” and “object category” outputs are implemented by producing

a confidence for each class plus a “no object” class. The category is obtained as the one with

the largest confidence, and this provides a measure of certainty of both the presence of an

object, and of the assigned category. The choice to make a detection and the “confidence”

output can then be derived according to the requirements of the next systems. Table 2.1 gives

several examples.

Output # Fixed-wing Rotorcraft Drone Unknown No object

1 0.9 0.05 0 0 0.05

2 0.4 0.2 0.1 0.1 0.2

3 0.45 0.45 0 0 0.1

4 0.025 0.025 0.025 0.025 0.9

Table 2.1: Neural networks outputs with different per-class probabilities. See Section 5.4 for

a discussion around calibration of uncertainties (and their exact definitions).
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Input RGB Image
(512 x 512 x 3)
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+ Activation
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+ Pooling 

+ Activation
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+ Pooling 

+ Activation

Predictions

Likelihood

Normalized
Coordinates

Bounding box, prediction
confidence and category

Figure 2.3: Convolutional neural network for object detection.

2.1.4 Tracking/filtering

The tracking/filtering unit post-processes the neural network output (“detections”) to turn

single frame detections into tracks. A track is a collection of single detections from frames

with strictly increasing timestamps, with system requirements asking that each airborne object

be associated with a unique track during its presence in the field of view of the system.

See also [DO-365B, Appendix F] for tracking in the context of radar.

Filtering At the very least, the movement of the ownship between previous and current frame

should be subtracted from the detections, so that the system can distinguish between a target

moving and the aircraft moving around a stationary target.

Depending on the kind of neural network used, a Non-Maximum Suppression (NMS) algorithm

might be used to first merge overlapping boxes.

The filtering might also be used to reduce noise/variance from the neural networks (see Sec-

tion 5.3), possibly combining it with a target movement model (within the tracking below).

The height above ground received from aircraft systems might also be used to suppress outputs

below a specified height.

Tracking On a fundamental level, the tracking algorithm does the following (see the represen-

tation as a state machine in Figure 2.4):

• Track creation: create a new tentative track from a single-frame detection not currently

part of a track. These tracks are not part of the outputs.

• Track confirmation: promote a tentative track to a confirmed one, which will be part of

the outputs.

• Track association: associate a single frame detection with a current track;
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• Track deletion: for tentative tracks that do not get confirmed, or for confirmed tracks

that do not get associated with detections anymore.

• Track extrapolation: to handle the case where the neural network has a lower frequency

than the desired system frequency, or when detections are missed on some frames, the

tracker might extrapolate previous detections according to a 2D or 3D movement model.

In addition to managing tracks, the tracker reduces false positives and false negatives.

An example algorithm will be discussed in Chapter 6.

Create NN detection

Assoc.

Delete

Confirm Assoc.

Extrap.

Delete

Figure 2.4: The tracker as a state machine.

Implementation As with pre-processing, post-processing is also implemented with “classical

software”. Even though there exist machine-learned tracking approaches [BML19; Xu+20],

decoupling concerns and implementing the non-perception part without machine learning makes

the safety analysis easier.

2.2 Operating conditions and performance

Table 2.2 proposes two operational concepts for our visual traffic detection system:

• Operational concept 1 where the traffic information is solely used by the pilot for situa-

tional awareness (“Pilot Advisory”);

• Operational concept 2 where the traffic information is provided to a fully autonomous

flight control system.
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Operational Concept 1 Operational Concept 2

Application Traffic detection

Aircraft type
General Aviation [CS-23] Class IV1, Rotorcraft

[CS-27; CS-29] or eVTOL [SC-VTOL-01] (cat. enhanced)

Flight rules and

weather conditions

Visual Flight Rules (VFR) in daytime Visual Meteorological

Conditions (VMC)

Class of airspace Airspace class D, E, F and G [ED-258]

Level of

automation
Pilot advisory Full autonomy

System interface
Glass cockpit flight director

display
Flight computer

Phase of flight In flight

Relevant Operating Parameters

Minimum ownship

altitude
300 ft AGL

Maximum ownship

altitude
At least 15’000 ft AGL and 25’000 ft AMSL

Temperature

range

To [ED-14G/DO-160G, Cat B4]

Operating: −15◦ C to +55◦ C:

Short term: −20◦ C to +70◦ C

Ground survival: −25◦ C to +85◦ C

Ownship pitch

angle
−30◦ . . . 30◦

Ownship roll angle −60◦ . . . 60◦

Field of view

(elevation ×

azimuth)

66◦ × 220◦

Time of day (sun

position)
1 hour after sunrise to 1 hour before sunset

Minimum

detection distance
10 m

Table 2.2: Operational concepts.

1See the classes defined in [FAA-23.1309-1E, Section 15].
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2.3 Aircraft integration

2.3.1 DAA integration

As described above, the visual traffic detection system is integrated into an aircraft’s existing

DAA system. Track data is provided which is then merged with other traffic data, for example

from a TCAS system, before being presented to the pilot (in an advisory system) or fed to

a flight control system (autonomous flight). Figure 2.5 presents a simplified view of how the

visual traffic detection system integrates with aircraft systems, only connections directly related

to the ConOps are shown (e.g. maintenance connections are not shown). The Height Above

Ground Level (HAGL) input is used to determine if the output should be inhibited, which is

indicated to the pilot or flight control system via the status data output. Power is provided to

the camera from the computing platform, not by a direct connection to the aircraft electrical

distribution system.

ConOps 1

Visual Traffic Detection

Camera

Power

Track & Status 
Data

Detect and 
Avoid
System

Cockpit
Display

Aircraft
Power

Flight 
Guidance
Computer

Computing
platform

Traffic 
Collision

Avoidance
System

Track Image

ConOps 2

HAGL

Track & Status 
Data

Alert Data

Figure 2.5: Aircraft integration.
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2.3.2 Visualization of targets (ConOps 1)

When the visual traffic detection system is integrated within an aircraft as a pilot advisory

system (operational concept 1) the display system shall use symbology which differs from that

used for standard TCAS traffic so the pilot can mentally separate between them (see also [CM-

AS-010]). An example of symbology that could be used for TCAS and non-TCAS traffic is

shown in Figure 2.6.

TCAS Target Normal

TCAS Target Caution

TCAS Target Warning

Non-TCAS Target Normal

Non-TCAS Target Caution

Non-TCAS Target Warning

Figure 2.6: How TCAS and non-TCAS traffic might occupy the same display.

In addition to standard traffic information, thumbnail images of visually identified tracks are

sent from the visual traffic detection system to the cockpit systems. These may be presented

to the aircrew to aid them in visually acquiring traffic and confirming that visually sourced track

data is correct. The thumbnail image is provided purely as an aid, the lack of which does not

impair the ability of the aircrew to take appropriate action.

2.3.3 Integration with Flight Guidance Computer (ConOps 2)

In the case of a fully autonomous system the visualization of target information is clearly not a

concern. However, it is important that the host system consumes and reacts appropriately to

status information provided by this system. In particular degradation of the system performance

due to malfunction or external factors (such as poor light) should result in an upper level system

taking appropriate action to restore appropriate safety margins.
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Chapter 3

Learning/inference environments and
model implementation

3.1 Introduction

The goal of this chapter is to address the following two important topics remaining from the

first report [CoDANN20]:

• The inference phase of machine learning components, namely the right-hand side of the

W-shaped process (Figure 3.1) up to Independent data and learning verification;

• Considerations around supporting tools, software and hardware used throughout the W-

shaped development cycle (i.e. both during training and inference).

Requirements allocated to ML
component management

ML requirements
verification

Independent data
and learning verification

Data
management

Learning process
management

Model
implementation

Learning process
verification

Model
training

Inference model
verification & integration

(Sub)system
requirements & design

(Sub)system
requirements verification

Figure 3.1: The learning (green) and inference (yellow) environments in the W-shaped devel-

opment cycle for Learning Assurance from [CoDANN20].

The main questions that will be addressed are:

• What are the characteristics (hardware and software) of the inference environment (op-

erational), and how do these differ from “traditional” avionics? What is needed to run

neural networks in safety-critical settings, and which platforms might fill these require-

ments?
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• What are the characteristics (hardware and software) of the learning/training environ-

ment, and how do these differ from a “traditional” development environment.

• What steps are necessary to pass from the learning to the inference environment? For

example, is there an equivalent to compilation? What risks do operations such as model

optimizations (quantization, pruning, etc.) carry? How to ensure that learning assur-

ance/generalization is preserved on the inference environment?

3.1.1 The learning and inference environments

As already indicated by the W-shaped process, machine learning models1 will exist on two

different environments (including both software and hardware stacks) during their development

and deployment, with different functions and levels of criticality.

• The learning environment, in which the evaluation and the training take place, in the

left-hand side of the W-shaped process.

• The inference environment2, in which the neural network is provided real time data and

produces outputs forwarded to the rest of the system. This is the operational platform

where the machine learning model will be deployed. This environment is considered in

the right-hand side of the W-shaped process.

Table 3.1 summarizes the features required in the two environments for the case of neural

networks.

Minimum ability and

support expectation Learning environment Inference environment

Data throughpout Large Small (real time)

Forward pass □✓ □✓

Backward pass □✓ □

Produce performance metrics □✓ □

Runs safety-critical applications □ □✓

Intention to run real-time □ □✓

Accelerator availability Varied Custom

Table 3.1: Example set of minimum abilities for training and running neural networks, and the

expectation on whether (and how, if applicable) the ability is supported on each environment.

1Here and throughout, a (machine learning) model will refer to an approximation f̂ : X → Y of a function

f : X → Y , as in [CoDANN20, Chapters 5-10]. In particular, this should not be confused with “model-based

development” from [ED-218/DO-331].
2“Inference” is commonly used for “computing the output of a neural network on a given input”, which takes

place on both environments. However, “inference environment” will be used exclusively for the operational/in-

flight environment.
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Input

fw1 gw2

hw3

L

∂L
∂h

∂h
∂f

∂h
∂g

Figure 3.2: Forward pass through a neural network (used for training and inference) and

backward pass (dashed arrows, used for training only). The functions f , g, h depend on the

weights w1, w2, w3 shown as indices, while L is a loss function. The backward pass will compute
∂L
∂wi
, where wi are the learnable weights. For example,

∂L
∂w1
= ∂L
∂h
∂h
∂f
∂f
∂w1
, which is computed

bottom-up (hence the “backpropagation”/”backward pass” terminology).

Both environments need the ability to evaluate the model and produce outputs for given inputs.

The major differences are that (see also Figure 3.2):

• The learning environment needs the ability to train the model (backpropagation, update

of weights, computation of errors);

• The inference environment has the requirements of the operational platform (safety-

critical, real-time. . . ).

Even though the learning environment is not used during operations, it still needs to be con-

sidered carefully, given that the training that produces the final model happens there.

Using the same environment for learning and inference In principle, the two environments

could use the same hardware and software stack, but this is unlikely given their different

requirements. Typically, the learning environment would use commercial off-the-shelf hardware

and software, such as compute clusters with GPUs, software such as TensorFlow, etc., while

the inference environment would use custom hardware and software.

The situation might be different for applications with lower requirements on the inference

environment such as ground operations or tooling. While this will not be the focus in this

chapter, most of the content will apply in both cases.

3.1.2 Structure of the chapter

Addressing the two topics from the start of the chapter will require getting a deeper under-

standing of the two environments (in Sections 3.2 and 3.3) and the passage between them

(Sections 3.4 and 3.5), in particular with respect to learning assurance (Sections 3.6 and 3.7).

As in the rest of the report, the focus will be on (deep) neural networks, which is especially

important given that these might require specific hardware and software compared to “classical”

machine learning methods.
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Figure 3.3: V-shaped model for system development of [ED-79A/ARP4754A]. For machine

learning components, learning assurance has to be performed in addition to hardware and

software assurance. Adapted from [RL13].

3.2 Considerations on the inference environment

The inference environment is the operational platform that will be used in-flight to run the

neural network (see Section 3.1.1). It receives live data and produces output that is forwarded

to other system components and, in the end, to the pilot. As in [CoDANN20], offline learning

is assumed: no changes to the neural networks will be performed during operation/at inference

time.

This section discusses considerations and choices for this environment as a safety-critical ap-

plication that is subject to guidance such as [ED-79A/ARP4754A; ED-14G/DO-160G] and

[AMC 20-152A; AMC 20-115D].

3.2.1 System considerations

The inference environment as an overall system or subsystem needs to be planned under a design

process such as [ED-79A/ARP4754A] (see Figure 3.3), under which requirements captured and

validated for the (sub-)system are systematically allocated to the hardware, the software, as

well as the machine learning component. After implementation, requirements are verified, at

first on the item level and then, upon integration, on the system level.

The inference environment will for example need to be sufficiently robust, provide sufficient

throughput to handle the incoming data, and satisfy limits on the variability of the execution

time and the Worst Case Execution Time (WCET). Requirements of the (sub-)system will

influence the choice of the machine learning model, the implementation, as well as the selection

of the hardware platform. The machine learning model selected will have to find the right trade-

off between average execution time and variation in execution time. A recurrent neural network

with a variable number of outputs may for example not be suitable for a use case with a hard

limit on the execution time. In addition, the soft- and hardware implementation will have to

provide a performant implementation of the selected algorithm.
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3.2.2 Hardware considerations

A coarse calculation using the data presented in [GLL19] shows that an object detector based

on a deep neural network running at 6 frames per second on 12-megapixel images from a single

camera can require on the order of ∼10 TOPS in either integer or floating-point performance

and can have on the order of 100 million parameters. Implementing a real-time inference

environment for such a model is a challenging problem even without considering aviation-

specific certification standards such as [AMC 20-152A; ED-14G/DO-160G].

The hardware components typically used for inference can be classified into two main categories:

• Commercial-off-the-shelf (COTS) hardware such as commercially available Central Pro-

cessing Units (CPU) and Graphics Processing Units (GPU) and

• Customizable or custom hardware either in the form of logic implemented in Field Pro-

grammable Gate Arrays (FPGA) or in the form of Application Specific Integrated Circuits

(ASIC).

Commercial off-the-shelf hardware CPUs are generally aimed at performing a wide variety of

sequential calculations with minimal latency. Although there is a trend towards providing new

instructions that accelerate the typical calculations required by neural networks such as Single

Instruction Multiple Data (SIMD) instructions, the performance of CPUs still lags behind the

performance of GPUs for these applications.

While off-the-shelf CPUs are available with [AMC 20-152A] certification evidence, they cur-

rently do not offer sufficient computational power to run neural network required for com-

puter vision applications. They are however suitable and a preferred solution to run the post-

processing computations on the raw output of the neural network, such as object tracking (see

Section 2.1.4).

GPUs offer significant computational power for both floating-point and integer operations

through massive parallelism at the cost of generality. They are flexible and easy to use due to

the libraries and software stacks mentioned in Section 3.3 and therefore a tool of choice when

it comes to training and running models such as deep convolutional neural networks used for

computer vision.

However, [AMC 20-152A] does not fully cover the specificities of GPUs. Establishing certifi-

cation evidence as a third party is made difficult by the proprietary nature of the information

on the underlying hardware, the drivers, and other tools. This is compounded by abstraction

layers that are in place to facilitate cross-device compatibility and simplify the programming of

the devices and whose implementation often cannot be inspected.

Current GPUs often consist of many thousand shader processing units managed by complex job

scheduling algorithms. These units share hardware-managed caches, software-managed (but

hardware-arbitrated) local/global memory banks, as well as register files. Therefore, these

GPUs can clearly be defined as multi-core platforms and their core partitioning characteristics

are largely considered to be sensitive trade secrets by their vendors. Therefore, care needs

to be taken to make sure the considerations discussed in the [CAS16] and the [AMC 20-193]

guidance are properly addressed.

In the case of NVIDIA GPUs, an example of such an abstraction layer with a proprietary

implementation is CUDA PTX [CUDAPTX], a “low-level virtual machine and instruction set

architecture (ISA)”. While PTX itself is documented, the mapping from PTX instructions to

the actual instructions executed on the device is performed by proprietary functions and may

depend on the target hardware.
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Figure 3.4: Custom hardware can make use of different types of commercial IP. Depending on

the type of IP, integration will occur at a different point of the typical hardware design flow as

shown in [AMC 20-152A].

In the case of GPUs programmed using OpenCL, an example is SPIR-V [SPIRV] which intends

to

“Provide a simple binary intermediate language for all functionality appearing in

Khronos shaders/kernels”, “Be the form passed by a client API into a driver to set

shaders/kernels”, and “Support multiple execution environments”.

While itself an open standard, the implementation for a specific GPU is again proprietary.

Customizable or custom hardware Field Programmable Gate Arrays (FPGAs) are prefabri-

cated chips whose logic can be configured to user specifications. FPGA hardware may come

with certification evidence for certain aspects of the hardware that is required. This leads to

lower up-front costs when compared with ASICs.

Application Specific Integrated Circuits (ASICs) are fabricated with fixed capabilities to user

specifications. They are more expensive up-front because of the high costs of lithographic

masks, of the required tools, and the need to certify certain aspects of the created chip. A

benefit of an ASIC implementation can be that a more efficient implementation of the same

high-level logic is possible than in an FPGA.

An example for a custom ASIC for neural network inference is Google’s Tensor Processing

Units (TPUs) which provides specialized functionality for matrix-matrix multiplications, accu-

mulation, activation functions, and normalization and pooling operations which are commonly

used in deep convolutional neural networks [Jou+17].

Both FPGAs and ASICs offer the user the option to implement custom logic in a Hardware

Description Language (HDL) such as Verilog [Verilog] or VHDL [VHDL]. This high-level

description is translated into logic gates by a synthesis tool, which are in turn implemented in

the hardware. Figure 3.4 shows the typical workflow to create custom logic in hardware.

There are different levels of customization possible, ranging from a fully custom logic to the

use of commercially available building blocks. Commercially available building blocks can be

divided into two subcategories:

• Building blocks that are available in a hardware description language (“Soft IP”) and can

be inspected. These are used on the same level as custom logic written in an HDL and

can be verified with similar means.

• Building blocks that are available on the synthesis/hardware level (“Firm IP”/“Hard IP”)

and which typically do not offer any insight into the high level logic from which they were

generated. They either have to provide the certification evidence needed or have to be

assessed with the same methods as other commercial component.

The implementation of an inference environment for a neural network will likely need to retain

a programmable model, i.e. Instruction Set Architecture (ISA), on top of the custom hardware
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Figure 3.5: Implementation of the inference environment with an FPGA or an ASIC. Custom

logic is implemented in a hardware description language. Custom logic likely represents an

execution model that is specialized to the model calculations and has a custom instruction set.

Instruction set is targeted by a model compiler.

independent of the implementation of the logic in an FPGA or an ASIC. While a statically

defined state-machine may be optimal for a fixed and known application, it may be unfeasible

for all but trivial applications. Programmability makes life easier during development by:

• Giving applications the flexibility to change.

• Supporting multiple applications on the same hardware.

• Trading memory used to store the instructions for size and complexity of the hardware

design, thereby reducing the risk of failures.

In contrast to general purpose CPUs or GPUs, this ISA can be tailored more specifically to

the application under consideration. It can also offer additional control over aspects such as

memory hierarchy and caching, aspects that are rarely under explicit user control on a CPU or

GPU. This programmable model will either be targeted manually or through a custom compiler.

This will be discussed further in Section 3.2.3.

Summary COTS hardware that is sufficiently powerful for neural network applications faces

steep challenges in terms of certification due to the proprietary nature of the hardware and

driver components. This situation is somewhat better for CPUs than for GPUs. FPGAs and

ASICs using either custom logic or Soft IP offer significantly more control and insight. This

comes at the cost of having to implement and verify the custom logic and ISA on the chip.

The reader is also referred to [AMC 20-152A] for guidance relevant to COTS.

3.2.3 Software considerations

The software used in the inference environment can encompass software such as a Real Time

Operating Systems (RTOS) which hosts the application on the inference hardware, drivers

thereof, the application code running on the inference hardware itself, or software tools used

to produce and verify the application code as illustrated in Figure 3.6. As already mentioned,

the software discussions on the inference environment will focus on neural networks.
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Simulator for hardware 
functionality

Verification & testing
tools

Software running on
inference enviroment

Software used to create
inference environment

Software used to verify
inference environment

Verification of hardware
functionality

Figure 3.6: Examples of typical software components used in the context of the inference

environment.

The software components in use in the context of the inference environment will depend on the

choice of the underlying hardware. In the case of commercially available GPUs for example,

the software will include compilers for the GPUs, drivers, and potentially libraries if used as

shown in Table 3.1 (see also Section 3.3 below).

In the case of custom hardware, typical software components will include the synthesis/network

routing tool for the hardware description language and the model compiler targeting the custom

ISA in the hardware. Here, the model compiler is of particular interest as it is normally not a

standard component when creating custom logic implementations for logic that is less complex

and performance-relevant than the one in the inference environment.

Model compiler The term model compiler refers to the software that is used to create the

instructions that are executed on the custom hardware. The compiler can work on the model

description that will be introduced in Section 3.4.2. A practical example of such a model

compiler is the [Che+18] framework, which can be used to generate optimized low-level code

for a number of target platforms from high-level model descriptions. It is tasked with finding an

efficient execution of the model on the target hardware. It can be complemented by verification

tools for different purposes.

Process considerations In terms of process considerations, the development of the software

should be done in accordance to [AMC 20-152A; AMC 20-115D].

3.3 Considerations on the learning environment

The learning environment is where the training of the neural networks take place (see Sec-

tion 3.1.1). Like the inference environment, it is a combination of a hardware and a software

stack.

3.3.1 Hardware stack

In the learning/development phase, it is important to use hardware that allows running a variety

of models easily (e.g. different architectures). Unlike in the inference environment, there is no
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Figure 3.7: Typical software and hardware stack in the learning environment.

requirement for real-time performance; on the other hand, the hardware should allow to process

a large amount of data simultaneously, given that there might be millions of training steps.

Moreover, the learning environment hardware should be capable of performing backward passes.

See also Table 3.1.

Without considering certified systems, the hardware stack to train machine learning models

usually consists of powerful machines (CPU/memory/disks) equipped with either GPUs or

(less frequently) ASICs optimized for neural network operations rather than computer graphics

(like GPUs originally are). Section 3.2.2 contained detailed descriptions of these components.

Often, these are networked to perform distributed training (i.e. training a single model or several

models on several machines), which might happen on-premises or on cloud computing platforms

such as Google Cloud Platform3 (GCP) or Amazon Web Services4 (AWS). Cloud computing

has the advantage of on-demand resources, and some hardware might only be available on such

platforms (like Google’s TPU ASIC).

3.3.2 Software stack

Over the past decade, powerful software stacks (frameworks, libraries, tools, hardware drivers)

have been developed that provide standardized implementations of common neural network

components, training algorithms, and data transformation processes. A common software

stack layout based on GPU-accelerated hardware is shown in Figure 3.7. Typically, the highest

elements of the stack are hardware-agnostic/independent, while the bottom ones are closely

tied to it (e.g. GPU drivers and libraries).

3https://cloud.google.com/
4https://aws.amazon.com/
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Layer
Examples

Top-Level Framework TensorFlow (Apache), PyTorch (BSD)

Kernel library
cuDNN (proprietary), MIOpen (MIT),

oneDNN (previously mklDNN, Apache)

Job execution framework CUDA (proprietary), ROCm (various open source)

Device control

NVIDIA Kernel Driver (Proprietary),

AMDGPU/AMDKFD (pseudo-open source),

Intel GPU/CPU

Table 3.2: Levels of the inference software stack.

The software stack typically consists of four layers (see Table 3.2):

• On the top-level of the stack are the high-level frameworks such as TensorFlow [Mar+15]

or PyTorch [Pas+19], which are popular platforms (de facto standard) for training neural

networks and other machine learning algorithms. Both are free and open source, licensed

under an Apache License 2.0 and Modified BSD, respectively.

• Platforms like TensorFlow rely on kernel libraries such as NVIDIA’s CUDA Deep Neu-

ral Network (cuDNN) or Apache’s oneDNN, which provide GPU-aware implementations

for standard functions, convolutions, activations and other functions relevant to neural

networks.

• The frameworks then execute these optimized kernels together with their own on data

blocks using acceleration frameworks such as CUDA (Compute Unified Device Architec-

ture) or AMD’s ROCm.

• These, in turn, interface with the GPU drivers to control data transfer and kernel exe-

cution tasks.

There is a multitude of vendor-specific components implementing this kind of architecture,

some of which are mentioned below. These three layers provide the parallel computing capa-

bilities to the benefit of building and subsequently training neural networks.

3.3.3 Requirements on the learning environment

While the learning environment is completely separate from the inference environment (which

has all the flight hardware requirements, see Section 3.2), the former should not be ignored

as it produces the model that will end on the latter after the conversions and transformations

described in Sections 3.4 and 3.5.

A major concern is that it might be difficult to obtain guarantees on what the hardware/software

stack computes (see also Section 3.4.1), due to:

• Proprietary drivers, lack of manufacturer support, transparency and guarantees (see also

Section 3.2.2).

• Complexity of the software stack: for example, as of April 2021, TensorFlow contains

more than 9’500 C++ source code files and 3’000 Python ones.
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• Use of cloud computing: how can one ensure that third party machines execute the

expected instructions (software and hardware)?

On the other hand, it is important to remember that the learning environment is not subject to

requirements such as real-time execution (Table 3.1) or very high reliability (as long as errors

are detected).

Possible mitigations and requirements will be discussed further in Section 3.7.

3.4 Passage between environments

As noted in Section 3.1.1 the learning and inference environment are unlikely to be the same

given the differences in requirements. Therefore, the model obtained in the learning environ-

ment has to be transferred to the inference environment.

Learning environment Inference environment

f̂ T f̂

This raises non-trivial questions, which are discussed in this section.

3.4.1 Models in environments and as abstract functions

Neural networks are sequences of functions (convolutions, poolings, activations), possibly with

parameters/weights, represented as computational graphs (statically or dynamically, implicitly

or explicitly) in the software stacks of the two environments. As in [CoDANN20], the networks

considered here all result in directed acyclic computational graphs (e.g. no recurrent neural

networks) for simplicity.

Machine learning frameworks in the learning environment (such as PyTorch [Pas+19] and

TensorFlow [Mar+15]) allow to create these programmatically using a declarative or imperative

syntax: for example, the PyTorch code in Listing 3.1 results in the graph in Figure 3.8.

model = nn.Sequential(

nn.Conv2d(in˙channels=1, out˙channels=6, kernel˙size=3),

nn.ReLU(),

nn.MaxPool2d(kernel˙size=2),

nn.Conv2d(in˙channels=6, out˙channels=16, kernel˙size=3),

nn.ReLU(),

nn.MaxPool2d(kernel˙size=2),

nn.Flatten(),

nn.Linear(16 * 6 * 6, 120),

nn.Linear(120, 84),

nn.Linear(84, 10),

nn.Softmax(),

)

Listing 3.1: A variant of the LeNet [Lec+98] neural network for handwritten digit recognition

implemented in PyTorch with a declarative syntax.

Simplifying concepts from mathematical logic and computability theory, a computational graph

represents an abstract function, whose definition and evaluation are mathematically unambigu-

ous.
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Input Conv2D ReLU MaxPool2D

Conv2D ReLU MaxPool2D Flatten

Linear Linear Linear Softmax

Figure 3.8: Computational graph resulting from the code in Listing 3.1. The circular operators

contain learnable parameters.

On the other hand, it is important to note that an actual implementation is strongly tied to

the software/hardware environment:

• Implementation of the operators (convolutions, poolings, activations. . . ), as calls to

lower-level libraries (e.g. cuDNN, then CUDA on a GPU-powered learning environment).

• Execution on the hardware;

• Representation of the weights;

• Representation of the input;

• etc.

In particular, the fact that the code in Listing 3.1 executes as the function represented by the

graph in Figure 3.8 is fully dependent on these aspects. Machine learning practitioners will unan-

imously confirm the presence of such issues that give rise to different behaviors when migrating

a model between environment (even for a change of high-level software stack, e.g. TensorFlow

to PyTorch).

In the remaining of the text, a distinction will always be made between an abstract represen-

tation of a model and its implementation (see also Figure 3.13 at the end of the chapter).

Differences in implementations As discussed in Section 3.2.2, all hardware is designed with

a certain use case in mind. For instance, CPUs are generally designed to execute a large

variety of tasks with limited parallelism between the tasks, whereas GPUs are designed to

trade genericity for increased parallelism. As a consequence, the optimal way in which a given

operation is executed (say, a convolution) can greatly differ between hardware designs.

Listing 3.2 depicts a straightforward implementation of a two-dimensional convolution, where

a 3×3 convolution kernel (weights) produces a 2×2 output array given a 4×4 input array.

This might look straightforward, but the lower-level execution kernel of this operation for, say,

GPU designs, is more complex. The reason being that the current form of the operator is

highly sequential, and left unoptimized for GPU hardware, it will not utilize the high parallelism

that it has to offer.

To that end, hardware manufacturers provide libraries that contain multiple low-level oper-

ator implementations that best fit the design of the hardware. The choice of the optimal

implementation will depend on the data, exact hardware, and other operations.
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This will be discussed further in the context of tuning (Section 3.5.1), but in the scope of

the current discussion, this implies that even assuming “perfect” execution at the hardware

level, it might not be straightforward to guarantee that an implementation matches a target

computational graph.

void conv(float input[4][4], float weights[3][3], float output[2][2]) –

for (int row = 0; row ¡ 2; ++row) –

for (int col = 0; col ¡ 2; ++col) –

float sum = 0.0;

for (int y = 0; y ¡ 3; ++y) –

for (int x = 0; x ¡ 3; ++x) –

sum += input[row + y][col + x] * weights[y][x];

˝

˝

output[row][col] = sum;

˝

˝

˝

Listing 3.2: An example implementation that performs a convolution operation.

3.4.2 Model conversion

Model conversion covers the process of transferring a model between environments, usually

from the learning to the inference environment.

Different environments (software/hardware stacks) will naturally represent differently the com-

putational graphs introduced in Section 3.4.1, containing operations and learned weights. More-

over, as explained in Section 3.1.1, different environments may need to perform different func-

tions (backpropagation for training, forward passes for training and inference), leading to the

internal representations having different requirements. Correspondingly, conversion might need

to perform both format and mode conversion, described in the following sections.

Format conversion Conversion is usually done through an intermediate representation of the

computational graph that is environment-agnostic.

For neural networks, two examples are:

• The Open Neural Network Exchange (ONNX) [BLZ+19] format, which provides an

open standard for neural network interoperability, meaning that it offers a common file

format that makes it easier to share models between frameworks and/or custom inference

environments. Quoting its documentation, ONNX provides:

– A definition of an extensible computation graph model.

– Definitions of standard data types.

– Definitions of built-in operators.

• Apache TVM’s Relay intermediate representation [Che+18], used as input to hardware-

agnostic then hardware-specific model compilers, allowing to deploy a model on multiple

platforms (CPU, GPU with CUDA or OpenCL, etc.) easily.

The learning environment (usually through the top-level framework, e.g. TensorFlow) should

be able to export its internal representation to the environment-agnostic representation, and

vice-versa for the inference environment.

The issues noted in Section 3.4.1 apply: an abstraction of the model does not unambiguously

represent its execution.
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For example, an operation LE Conv2D in the learning environment might be translated into a

Conv2D operation in the abstract representation, and then mapped into a IE Conv2D operation

in the inference environment. It could happen that:

• LE Conv2D and IE Conv2D have different implementations (e.g. because they handle edge

cases differently, or simply due to hardware-specific optimizations);

• The parameters (or their defaults values) in LE Conv2D and/or IE Conv2D do not have

exactly the same meaning;

• The input data is encoded differently.

Mode conversion Like the format in which the computational graph is represented, the in-

tended function of the graph, which will be called mode here, may change between the learning

and inference environment. For example, recalling Table 3.1, the graph does no longer need

certain functionality that is typical for training, such as:

• All operations and functions that support the propagation of gradients through backward

passes;

• Some functions change behavior between modes, such as batch normalizations and

dropout regularization;

• The ability to store weights as variables, because these no longer need updates;

• Training states, logs and metrics;

• Framework-specific metadata.

Converting a training model into an inference model changes the functionalities like the ones

listed above in a certain way. Some operations can be removed entirely, such as gradient prop-

agation functions, and others merely need a change of behavior, such as dropout regularization

layers. Deciding which graph components are not needed during inference heavily depends on

the function definitions and the training process, therefore having the ability to convert between

modes is typically a feature provided by the training framework.

A natural way of creating an abstract representation of an inference model, would be to apply

the two conversion in the order described in Figure 3.9 (see also Figure 3.13 later on).

Training model Inference model Abstract representation

Learning environment Environment-agnostic

Tmode Tf ormat

Figure 3.9: Converting a trained model to an inference model, and subsequently to an abstract

representation.

3.4.3 Requirements on model conversion

In the ideal case, a requirement is that executing the original model in the source environment

corresponds pointwise to the execution of the converted model in the target environment,

meaning that the same output is obtained for the same input.
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However, this might present challenges:

• This would in particular require assurance of the exact execution of the computational

graph on the learning environment (see Section 3.3.3).

• Executing the floating-point operations of an operator in the neural network in a different

order may lead to a different result due to rounding effects.

• Performing cross-environment verifications (two totally different hardware platforms)

might be challenging.

If the conversion can be done bidirectionally, one way to provide evidence of its correctness

would be to show that the conversion of the converted model matches the original one, or at

least its computational graph.

Original model Converted model

Learning environment Inference environment

Requirements on the learning environment and model conversion, as well as potential methods

to meet them, will be discussed further in Sections 3.6 and 3.7.

3.5 Model optimizations

Model optimizations encompasses methods and procedures that aim to reduce the complexity of

neural networks, and thereby improving the inference performance (measured by speed/number

of operations, rather than by the system performance metrics). This will sometimes be done at

some (ideally minimal) cost on the system performance metrics compared to a non-optimized

model, for example in the case of pruning and quantization.

These should not be mistaken for mathematical optimization methods such stochastic gradient

descent, as they solely aim at improving runtime performance (and may or may not perform

mathematical optimization to do so).

Optimizations might be performed:

• As part of the main training, as additional training steps, or post-training (e.g. as part

of the Model Implementation step of the W-shaped process).

• In the high-level framework (e.g. TensorFlow), on the abstract representation (e.g. TVM

Relay), namely after conversion (Section 3.4.2), or on the implementation on the infer-

ence platform directly.

An optimization that happens post-training is delicate, as it has the potential of significantly

changing the model’s behavior. Among the ones that will be surveyed below, most actually

admit a better “execution-performance gain vs metrics-performance loss” trade-off when exe-

cuted during training or with additional training steps.

Again, Sections 3.6 and 3.7 will discuss how properties may or may not be preserved after

transformations, and how to mitigate potential risks and ensure that performance guarantees

(with respect to metrics and execution) hold on the inference platform.
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3.5.1 Tuning

Section 3.4.1 mentioned that (sequences of) neural networks operations could often be imple-

mented in multiple ways.

Model tuning5 refers to finding the optimal way to do so given a target hardware, to opti-

mize application-specific throughput by increasing parallelism, and reducing memory footprints

and workloads. Optimizing for these three properties simultaneously is a complex task, since

changing a given property oftentimes influences another.

Of the three techniques reviewed below, the first one is at the level of the implementation,

while the next two operate on the computational graph. In particular, it might be easy to

prove that the latter do not change the model (and a tool performing the optimization could

be qualified, see Section 3.7.1 below), while the former might require more work.

Optimal implementations Kernel libraries (see Table 3.2) usually make available (explicitly or

implicitly) multiple implementations of operations when relevant, and possibly information to

choose the optimal ones.

For example, cuDNN provides methods

cudnnGetConvolutionForwardAlgorithm, cudnnFindConvolutionForwardAlgorithm

that search (heuristically and exhaustively) the fastest convolution implementation given input

specifications.

Apache TVM [Che+18], already introduced in Section 3.4.2, implements a multi-phase com-

piler that will perform hardware-agnostic and -specific optimizations on the intermediate rep-

resentation, so that deployment to multiple platforms can be done transparently to the user.

Chen et al. [Che+18] provide an overview of typical kernel library optimizations, two of the

most important ones being exposed below.

High-level operator fusion This is an optimization technique on the computational graph

level (see Section 3.4.1). Operator fusion aims at increasing execution time performance by

reducing memory footprint. It achieves this by fusing operator primitives into single kernels, at

the benefit of not having to store intermediary results into memory every time it is executed.

The authors of [Che+18] identify four categories of graph operators, which can be:

1. injective; one-to-one mappings such as addition,

2. reduction; many-to-one mappings such as sums,

3. complex-out-fusable; many-to-many, element-wise operations to output mappings, such

as two-dimensional convolutions

4. opaque; contains operators that cannot be fused.

The strength of operator fusion comes from recursive application of the operator categories.

For example, one could fuse a reduction with an input injective operator. The output of this

optimization output technique is a transformed version of the original computational graph.

See [Che+18] for additional details.

Constant folding and constant propagation Constant folding is a common compiler opti-

mization that seeks to replace expressions with constants, which can be applied to compu-

tational graphs as well. In most cases, the substituted expressions are composed of literals

5This should not be mistaken for “hyperparameter tuning”, which refers to the search of optimal hyper-

parameters during model selection. In particular, this happens during the training phase, while model tuning

happens after, with “tuning” referring to implementation parameters.
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or variables that are assigned before– or during compilation time (such as build–, and other

kinds of configurations). The primary constraint for substituting expressions is that they are

guaranteed to produce the same output for each evaluation. For instance, the expression

a = 20 * 3 * 2

will always evaluate to 120 no matter how many times a is evaluated. In these cases, constant

folding replaces the expression by the constant it evaluates to.

Constant propagation is a similar technique in its ability to substitute expressions with constants

(like constant folding) through reaching definition analysis on variables.

See [Che+18] for additional details on both aspects.

3.5.2 Quantization

Quantization is the general process of constraining a continuous set of values to a discrete

one.

Neural networks with their operations such as convolutions and activation functions are typically

specified terms of functions from real numbers to real numbers. On a computer they are

encoded in a floating-point representation. In practice 32-bit floating-point numbers are a

common choice for inputs, weights, and outputs given that:

• Some functions inherently operate in floating-point arithmetic, such as activation func-

tions and gradient computations, making it hard to define a neural network in integer

arithmetic;

• 32-bit floating-point numbers offer a good trade off between the number of significant

digits (precision), the dynamic range (exponent) required for the relevant computations.

• GPUs as the de facto standard compute engines for training neural networks offer ex-

cellent performance on 32-bit floating-point numbers and the functions typically used in

neural networks.

Some of these considerations may change on the inference environment:

• The inference environment may have limited or no support for floating-point arithmetic.

• The inference environment may offer significantly larger performance when integer arith-

metic (or other non-floating-point arithmetic) is used, making it easier to meet require-

ments on throughput, memory, and power consumption.

In these cases, quantization is an important tool that transforms the model to operate fully or

partially on discrete values using integer arithmetic. This includes inputs, intermediate results

and model parameters.

This section contains a high-level description of quantization, its different modes and associated

risks.

Quantization concept Transforming a set A of real-valued numbers by quantization means

finding a function

Q : A→ B

that maps values in A to a discrete set B ⊂ Z together with corresponding transformations

of the operations on the numbers in A used in the neural network, i.e. functions f : A → A

have to be mapped to functions f Q : B → B that either perform the same operation or an
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x

Q(x)

(a) Uniform quantization

x

Q(x)

(b) Non-uniform quantization

Figure 3.10: Uniform quantization in (a) assumes equally spaced intervals between the discrete

values (sometimes referred to as “quantization levels”). Non-uniform quantization (b) assumes

non-equally spaced intervals between the quantization levels.

appropriate approximation. The quantized values in B often have a lower bitwidth (i.e. the

amount of bits in which the representation is stored):

Q : A→ B

For example, A can be encoded in a 32-bit single-precision floating-point representation, and

B can be a set of 8-bit integers in the range {−128,−127, . . . , 126, 127}.

Before addressing the considerations on quantizing neural networks in the context of safety-

critical systems, more information on finding such a function Q, as well as its properties is given.

The following terminology and explanations are adapted from notable works and surveys on

quantization, see [Jac+18; Kri18; Gho+21] for more details.

Uniform quantization means that the discrete values of the target domain are mapped to

equally spaced values in real space. The advantage of a uniform quantization is that floating-

point addition and multiplication are mapped to integer additions and multiplications, which

are either available on the inference environment or relatively straightforward to implement.

Non-uniform quantization assumes that the targets need not be equally spaced. While this can

be more efficient in terms of representing the numbers from the original domain, it comes at

the cost of a more complex mapping of operations.

Figure 3.10 illustrates an example of both classes of quantization. Neural networks are generally

quantized uniformly due to the good properties arising when operations are mapped as integer

additions and multiplications on the system under consideration.

A natural way of quantizing values from A is by setting the quantizer Q : A→ B to:

Q(x) =
⌊

x/s
⌉

− z (x ∈ A),

where ⌊·⌉ is a function that rounds a real number to its nearest integer, s ∈ R the scaling factor

and z ∈ Z is a zero-point correction. The input domain A can be thought of as vectors of

weights or activations. As such, the range of possible floating-point values in A is different from

B, which makes the function Q an affine mapping of A to B using quantization parameters s

and z .

The quantization parameters can be chosen to different effect, which will be explained in more

detail below. Furthermore, the notion of de-quantization is useful to discuss different modes of

quantization: it maps quantized representation back to real values. The quantization process

EASA Innovation Network – IPC.0007

TE.GEN.00400-006 © European Union Aviation Safety Agency. All rights reserved. ISO9001 Certified.

Proprietary document. Copies are not controlled.

Confirm revision status through the EASA-Internet/Intranet.



An agency of the
European Union

Daedalean – EASA CoDANN II 39

is by definition not injective, but an arbitrary preimage can be chosen consistently, e.g. by:

x ′ = s(Q(x) + z),

where x ′ ≈ x is the reconstructed real value, which may not exactly match x because of the

round operation shown earlier. To summarize:

• Quantization converts a representation of a real number x to a quantized representation

Q(x), e.g. 32-bit single-precision floating-point → 8-bit integer.

• De-quantization converts a quantized representation Q(x) to a real number x ′, e.g. 32-bit

integer → 32-bit single-precision floating-point.

Choosing the quantization parameters The aforementioned quantization function that maps

floating-point values from a set A to a set of integers B contains the parameters s and z , which

are the scaling factor and zero-point correction, respectively. A natural way of finding these

parameters is to find a linear scaling function:

s =
β − α

2n − 1

where n is the bitwidth of the target representation B, and α and β denote the clamping range

of A, with α < β. Choosing values for α and β affects the symmetry of the quantizer in of

two ways:

• Setting |α| ≠ |β|makes the quantizer asymmetric. For example, asymmetric quantization

is likely when choosing α, β such that it covers the complete range of A, i.e. α = min(A)

and β = max(A);

• Setting |α| = |β| makes the quantizer symmetric. A natural choice for this absolute

value could be min(|min(A)|, |max(A)|). Symmetric quantization renders the zero-point

correction z = 0, and makes the quantizer less sensitive to outliers in A. This approach

may become less optimal as the distribution of values in A becomes more skewed.

MatMul y1

int

DeQ(y1) Activ. x3

float

Q(f1)

Q(f2)

x1

float

x2

float

Figure 3.11: An example of a matrix multiplication and a piecewise activation function on the

output. The filled circles denote inputs/outputs in floating-point precision, and Q, DeQ stand

for quantization and de-quantization respectively.

Quantization modes Up to this point, the discussion revolved around explaining how quanti-

zation typically works, and providing an impression of design choices one makes when resorting

to a quantization technique. A similarly important, but undiscussed topic is where and when to

apply quantization in a function as complex as a neural network. Recall that a neural network is
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a combination of many functions, some of which may favor integer arithmetic, such as (matrix)

multiplication and convolutions, and others are more suitable for floating-point arithmetic, such

as softmax, and other types of activations.

As a result, alternating between quantizing floating-point values and de-quantizing integers

values is needed to serve each operation with their preferred input representation, depending on

the hardware. An alternating sequence is shown in Figure 3.11, which is one that is commonly

found in neural networks. Because of this alternation, as well as possible changes in the input

space, the quantization parameters (i.e. the scale factor and the zero-point correction, for

example) need constant recomputation.

Next, a few examples will be given on quantization modes that are commonly described in the

literature and supported by training/inference frameworks for neural networks:

• Dynamic quantization;

• Static quantization;

• Quantization-aware training.

Dynamic quantization In dynamic quantization, the scale factor and zero-point parameters

are dynamically computed during inference. Only the neural network weights and biases (which

become constants), are quantized to integers before runtime.

The benefit of dynamic quantization is that the quantization functions are explicitly computed

for each input. As can be expected, the downside is that it comes at the cost of additional

overhead. This overhead should not completely diminish the performance gain from switching

to integer operations, but this is not guaranteed either. Quantizing a value x by dynamic

quantization can be characterized as a transformation

x = S(Q(x) + z) + ϵx ,

where ϵx is an unknown residual representing the information lost by rounding, range clamping

and other operations.

Dynamic quantization was the baseline by Zafrir et al. [Zaf+19], which have reported that

applying dynamic quantization on the BERT architecture [Dev+19] can have a more adverse

effect on prediction performance compared to quantization-aware training, which is discussed

later.

Static quantization Static quantization addresses the overhead drawback of dynamic quan-

tization by pre-computing the quantization parameters before running inference. Specifically,

pre-computing the scale and zero-point constants allows the output and activation tensors to

be stored as the specified integer representation directly, rather than indirectly as is the case

with dynamic quantization.

Static quantization is straightforward. First, it requires composing a representative dataset of

the intended operating space. Then, this dataset is fed to the unquantized network, gathering

statistics of the activations in the process. These statistics are then used to compute the

quantization function, which is fixed during operation. This results in a quantization function

that approximates the dynamic quantization function QD.

The difference between static and dynamic quantization is that dynamic quantization computes

the quantization parameters on a per-input basis. This recomputation causes overhead, but

the benefit is that the parameters are computed specifically on arbitrary input, making it the

mapping relatively precise. On the other hand, static quantization attempts to remove this

overhead by finding a set of parameters based on a collection of inputs. The question is however

whether these parameters work well on other inputs that are not in the collection. In that sense,
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for arbitrary input outside the collection, the used parameters under static quantization are an

“approximation” of the parameters that one would find when running dynamic quantization.

As such, the resulting transformation by of static quantization can be characterized as:

x = S(Q(x) + Z) + ϵx +QD(x)−Q(x),

adding another unknown residual compared to dynamic quantization, i.e. the approximation er-

ror |QT (x)−Q(x)|, which describes the discrepancy of the approximated quantization function

compared to the true quantization function.

Approximating the quantization parameters generally leads to improved runtime performance

compared to dynamic derivation, at the cost of prediction accuracy induced by the approxima-

tion error.

Quantization-aware training Quantizing neural networks post-training (be it dynamic or static)

is a lossy transformation, meaning that information gets discarded during the process. Exam-

ples include the rounding operation from Section 3.5.2 and the clamping operation in Sec-

tion 3.5.2, if applied. As a result, the gain in execution performance is likely traded for a

penalty in prediction performance. Work by Jacob et al. [Jac+18] proposes a solution to this

seemingly inevitable trade-off by introducing quantization-aware training.

Quantization-aware training anticipates the information loss by “simulating” the effects of

quantization during training. In effect, all convolution computations are carried out using

regular 32-bit floating-point operands, but the convolution in- and outputs are quantized in a

“simulated”.

Once the model has been fully trained, the 32-bit single-precision floating-points can be readily

transformed into their target representations without losing information during the conversion.

The reader is referred to the paper [Jac+18] for a detailed description of the method.

Clearly there is still a prediction performance penalty to be paid compared to models that have

not been quantized, but the crucial difference compared to post-training quantization is that

this penalty is paid during the training phase, instead of after training or during runtime.

Other quantization methods It should be noted that other quantization methods (including

variants of the above methods) exist. Examples of these methods are non-uniform quantization,

extreme quantization (binarization), mixed-precision quantization, etc. However, discussing all

of them in detail would deserve a report on its own. Instead, the reader is referred to survey

by Gholami et al. [Gho+21] for an overview on these quantization methods in neural networks.

Risks and benefits of quantization To summarize, quantization might be necessary depending

on the inference platform, either because of a lack of support of floating-point operations, or

because these would not provide the required performance. However, if it is done post-training,

it fundamentally changes the model, which has the risk of invalidating properties of the original

floating-point model.

One possible obvious mitigation is quantization-aware training and similar techniques. See

also Section 3.7 below for further discussions.

3.5.3 Pruning

Neural networks are complex models in terms of computational and memory requirements.

This can make them hard to deploy on devices that lack the resources to run them efficiently,

if at all (see also Section 3.2.2).

A common approach to reduce model complexity is by model pruning, which is an optimization

technique that aims to systematically disable neural network components that have a rela-

tively limited contribution towards prediction performance. Disabling components is typically

EASA Innovation Network – IPC.0007

TE.GEN.00400-006 © European Union Aviation Safety Agency. All rights reserved. ISO9001 Certified.

Proprietary document. Copies are not controlled.

Confirm revision status through the EASA-Internet/Intranet.



An agency of the
European Union

Daedalean – EASA CoDANN II 42

done by either nullifying or physically removing them from the computational graph entirely,

see Figure 3.12 for a basic example.

(a) Before pruning (b) After pruning

Figure 3.12: Basic visualization of graph pruning. In this case the graph components of the

neural network are the weights (arrows) which are removed from the original graph (a), resulting

in a pruned graph (b). Removing all weights towards a neuron (circle), removes the neuron

itself.

Basic concept of pruning Making changes to the computational graph by pruning almost

always leads to a gain in runtime performance at the cost of prediction performance. To regain

the lost prediction performance, many pruning techniques apply additional training steps on

the pruned network. Consequently, the high-level algorithm for neural network pruning typically

consists of the following steps:

1. Choose a (large) neural network architecture;

2. Train the network until completion;

3. Repeat until a stopping criterion is reached:

(a) Score components;

(b) Prune components;

(c) Additional training of the network.

A survey from Blalock et al. [Bla+20] provides an analysis of different pruning methods, and

divides them into the following categories that relate to the above steps:

• Pruning components: The structure of the pruning method entails whether individual

parameters were removed independently of each other, or groups of parameters were

considered, such as convolution filters or channels. These two options are unstructured

and structured pruning methods, respectively.

• Scoring: There are many ways in which parameters can be selected for removal. Some

methods select at random, others score parameters by absolute value or use functions

that approximate importance towards prediction performance. Regardless of the method

used, a designer can score parameters locally, e.g. by a single layer or group of layers, or

globally, e.g. over the entire network.

• Pruning schedule: The pruning schedule dictates how many parameters are pruned at

each pruning step of the high-level algorithm described above. This amount can either

be fixed or variable, if it depends on a pruning rate or a complex function.

• Additional training: As mentioned earlier in this section, a common way to recover the

prediction performance that was lost in the pruning step is to continue training the
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pruned network on the training dataset. The standard approach is to continue training

by fine-tuning the network on the remaining network parameters, but alternatives are

possible, such as restoring the remaining parameters to an earlier state, or re-initializing

the parameters entirely (i.e. training “from scratch”).

To better understand some of the results and possible side effects that are associated with

neural network pruning, it is useful to present observations made by two notable works.

Example 1: Pruning convolution filters Li et al. [Li+17] propose pruning filters from stan-

dard CNNs and residual networks, by calculating the sum of their absolute kernel weights

for each convolutional layer and removing them accordingly. The method is able to reduce

about 30% of floating-point operations for a VGG-16 architecture [SZ15] and a ResNet56

architecture [He+16] without a significant loss in prediction performance6 on the CIFAR-10

dataset [Kri09]. In addition, the authors report the following observations:

• Pruning filters with the lowest weight magnitude gives better results than pruning filters

with the highest weight magnitude, or randomly selected ones.

• Some layers in a residual network are more sensitive to pruning than others; scoring filters

locally and removing them on a variable schedule tends to yield better results.

• Pruning might even improve prediction performance in early stages, i.e. when the runtime

performance gain is still minimal.

• The prediction performance of a pruned neural network that is fine-tuned is better than

taking the ultimate pruned architecture, and training it from scratch.

• The order of pruning and training steps is relevant. The prediction performance of a

neural network that is first trained and then fine-tuned through pruning is higher than

the performance of network for which the identical pruning is performed first.

Example 2: Pruning by Taylor expansion criterion Molchanov et al. [Mol+17] put an em-

phasis on examining the different criteria that score feature map activations in convolutional

neural networks, for pruning. The authors formulate the goal of finding the least important pa-

rameters as a combinatorial optimization problem that seeks to minimize the loss of prediction

performance between an original and a pruned model. Then, a set of greedy scoring criteria

is taken against a brute-force selection criterion (i.e. one that evaluates all possible pruning

combinations). Among the results, the authors demonstrate that pruning with a particular cri-

terion can lead to significant runtime speedups across a number of different devices (a factor

between 2 and 5 times). The reader is referred to [Mol+17, Table 2] for these results. Other

observations are also made:

• Approximating the proposed cost function by Taylor expansion shows superior perfor-

mance over less complex criterion functions, such as minimum weight magnitude, random

selection, mean activation and others.

• The prediction performance of a pruned neural network that has been iteratively fine-

tuned is better than that of a network that is 50% smaller and trained from scratch.

• Increasing the number of training updates after pruning increases the model’s ability to

restore the prediction performance.

6CIFAR-10 accuracy error, original model versus pruned model (lower is better). VGG-16: 6.75%→ 6.60%,

ResNet56: 6.96%→ 6.94%
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Figure 3.13: Transfer of model structure and model parameters from the training environment

to the inference environment.

Risks and benefits of model pruning Except for obvious cases (e.g. identity weights/zero

biases), it may be difficult to show pointwise equivalence (see Section 3.6.1 below) between a

pruned and an unpruned model.

For iterative pruning schemes as described above, the more iterations are applied, the larger

the difference becomes between the pruned and unpruned models. This difference is not just

caused by the (possibly heuristic) removal of parameters, but also by the change of the optimal

parameter values for the remaining parameters in subsequent training iterations. In addition, it

may be hard to demonstrate traceability through these repeated changes from a safety-critical

perspective.

Still, optimizing a model by pruning can provide significant benefits:

• Reducing the size of the neural network by pruning relaxes the requirements on the device

capabilities in terms of throughput, memory storage and power consumption.

• Systematically lowering the model complexity while maintaining the in-sample error im-

proves the generalizability of the model (see also Section 3.7.3 below).

• Smaller models tend to be more suitable for complex or formal verification methods than

larger models.

Parallels may be drawn with removal of “dead code” in classical software (with parts of the

architecture/model that are removed rather than actual code). However, it is not trivial how

pruning relates to removing dead code from a [ED-12C/DO-178C] perspective. Whether

pruning can be considered in a similar context or not is left for future work.

3.6 Transformations and preservations of properties

The previous sections described the full lifecycle of a machine learning model in the W-shaped

process, from its training in the learning environment (Section 3.3), optimization (Section 3.5),

and transfer (Section 3.4) to the inference environment (Section 3.2). Figure 3.13 summarizes

this process.

Each of these actions performs modifications of the original model that can be very complex

(e.g. including potentially additional training steps) and significantly change model properties.
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Some of the aspects to take into account are:

• Reimplementation on a different hardware and/or software stack, including conversion of

the model (weights and computational graph);

• Correctness of the mapping from model on learning environment to abstract representa-

tion;

• Transformations such as quantizations or pruning, that might fundamentally change the

model;

• Optimizations such as tuning.

The Learning process verification step includes understanding generalization capabilities, and

other properties, of the trained model.

The Inference model verification and integration phase (see Figure 1) is meant to ensure that

the transformed model on the inference (operational) environment has the desired properties,

which might combine:

• Properties of the trained model such as:

– Generalization guarantees;

– Robustness;

– Explainability.

• Additional properties specific to the inference environment, such as real-time execution

guarantees.

If properties are to be carried from the learning to the inference phase of the process, each

of the aspects above has the potential to significantly alter the quality of the outputs and

invalidating generalization guarantees. The need for traceability also requires understanding

the impacts of transformations.

Learning environment

f̂

Properties

Inference environment

T f̂

Conserved properties

Additional properties

T

Given the particularities of the learning environment, the assurance level at which properties

can be verified therein also has to be discussed. This will be discussed in Section 3.7.

3.6.1 Conditions on transformations

This section formalizes the conservation of properties from a model f̂ under a transformation

T (different implementation, on a different platform, functional changes, etc.).

Abstract representations vs implementations A preliminary remark is that given the discus-

sion in Section 3.4.1, the trained model f̂ (i.e. output of the Learning process verification

phase of the W-shaped process) should not be considered as an abstract mathematical func-

tion, but as closely tied to the learning environment: the evaluation of f̂ is only possible in this

environment.7 Similarly, through the chain of transformations, models will be either abstract

representations (as computational graphs) or tied to an environment (learning/inference).

7And might not be fully deterministic due to nondeterminism in hardware (e.g. due to the combination of

parallelism and floating-point), but this will be assumed for simplicity since this doesn’t affect the conclusions.
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Conditions on transformations If T f̂ : X → Y is the model obtained after applying a trans-

formation T to f̂ : X → Y , one might require conditions of different strength, depending on

the properties that need to be preserved. Ordering by decreasing strength (in the sense of

logical implications), where ε, ε′ are small positive constants:

• T f̂ and f̂ are pointwise equivalent:

(T f̂ )(x) = f̂ (x) ∀x ∈ X . (3.1)

This is the strongest condition, as all properties applying to f̂ will apply to the transfor-

mation.

• T f̂ and f̂ are pointwise quantifiably close with respect to some metric m : Y × Y → R+:

m
(

f̂ (x), (T f̂ )(x)
)

< ε ∀x ∈ X . (3.2)

This would allow properties of f̂ related to m to be propagated to T f̂ . For example, if

generalization bounds assert that f̂ is close to the true function f with respect to m, one

might be able to deduce that T f̂ also is, with a larger margin of error controlled by ε.

• T f̂ and f̂ are pointwise equivalent or close, but only on average over the operational

probability space X , e.g.

PX

(

(T f̂ )(x) = f̂ (x)
)

> 1− ε′ or E
[

m
(

f̂ (x), (T f̂ )(x)
)

]

< ε.

• Other conditions are naturally possible, depending on the requirements for the end model,

and how properties are expected to be transferred between the learning and inference

environments. In particular, the examples above focused on pointwise relationships, but

higher-level conditions (e.g. “f̂ verifies A ⇒ T f̂ verifies A”) can also be envisioned.

3.6.2 Applicability of the conditions

In some cases, it might be difficult to prove a condition strong enough on the relationship

between a function and its transformation so that properties can be carried over.

For example:

• It might prove very challenging to meaningfully measure the impact (in terms of any of

the conditions above) of a complete change of the hardware and software stacks.

While it is reasonable to expect that the inference environment guarantees that the

execution of the inference model corresponds to the mathematical function represented

by the computational graph (up to controlled rounding errors), this might be much harder

in the learning environment (see Sections 3.2 and 3.3).

• Pruning (see Section 3.5.3) usually involves additional training steps of the model (learn-

ing environment);

• Quantization (see Section 3.5.2) similarly might require training-aware mitigations to

only carry an acceptable loss of performance (for a continuous output space, bounds

such as (3.1) might even be impossible);

Moreover, even if functional equality could be verified, as mentioned earlier, ensuring that

desired properties are met in the original model with the right assurance level might as well be

difficult given the needs and therefore particularities of the learning environment (Section 3.3),

in particular flexible hardware and software.

In that situation, an alternative to the obvious methodology of carrying properties from the

original model to the inference model in the inference environment is required.
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3.7 Ensuring properties on the inference platform

This final section investigates means to meet the goal of guaranteeing properties (such as per-

formance on unseen data) for the inference model on the inference environment met, despite:

• The training environment likely being one where it is difficult to give strict guarantees

(GPUs with proprietary drivers, operating system, etc.), see Section 3.3.

• The complex transformations from the training to the inference environments, see Sec-

tion 3.6.

To do so:

• Section 3.7.1 provides a reminder about tool qualification, and puts in this context the

learning environment, tools to transfer the model to the inference environments, as well

as tools to verify the latter.

• Section 3.7.2 provides a useful reminder on how performance guarantees on unseen data

are obtained for machine learning models, to help drive the rest of the discussion.

• Section 3.7.3 will analyze how to obtain performance guarantees on models despite trans-

formations or risks related to the learning environment.

• Finally, Section 3.7.4 provides a summary of a possible generic approach mitigating these

risks and ensuring that the W-shaped process meets the above goal.

3.7.1 Tool qualification

The software and hardware used to train/evaluate a model, and then transfer it to the infer-

ence environment (including additional evaluations) are tools akin to compilers and development

environments in [ED-12C/DO-178C]. As described in Section 3.2, the development of the in-

ference environment itself (hardware and software) might also use various tools; this is however

close to classical development.

Any tool used should be documented appropriately and assessment should be made if tool

qualification is required for specific uses of the tool. The purpose of the tool qualification is

to detect and report errors that may have been introduced in the system due to the use of the

tool. According to [ED-12C/DO-178C, Section 12.2.1],

“Qualification of a tool is needed when processes of [ED-12C/DO-178C] are elim-

inated, reduced, or automated by the use of a software tool without its output

being verified as specified in [ED-12C/DO-178C, Section 6] (Software Verification

Process).”

Only if this is the case then the Tool Qualification Level (TQL) needs to be determined.

The TQL depends on the following criteria in combination with the software assurance level

of [ED-12C/DO-178C, Section 12.2.2]:

Criteria Tool properties

1 Output is part of the airborne software and thus could insert an error.

2 Automates verification process(es) and thus could fail to detect an error.

3 Within the scope of its intended use, could fail to detect an error.
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Whether the qualification of tools throughout the W-shaped process (learning environment,

transfer to the inference environment, verification of the latter. . . ) is required can thus not

be answered in general. This will depend on how they are used in practice, and what the

surrounding processes to verify the output are.

The learning environment (software and hardware) produces a model (as an abstract compu-

tational graph after conversion, see Section 3.4) which could be seen as a criteria 1 tool.

However, it might be impossible to meet the requirements on a criteria 1 tool due to particular-

ities of the environment. On the other hand, extensive tests are performed on the model in the

training and inference environments, as developed below, which might change the requirements

on the learning environment and passage between environments.

3.7.2 Reminder on learning assurance/performance guarantees

To get a better understanding of the requirements on the learning and inference environments,

and the flow between them, towards performance guarantees, it is useful to briefly recall some

aspects of learning assurance.

A model f̂ : X → Y approximating a function f : X → Y is obtained after running a learning

algorithm (e.g. gradient descent on a fixed architecture, starting with random weights) on a

training dataset Dtrain, possibly selected from several other models using a validation dataset

Dval. By definition, this happens in the learning environment (see Section 3.3).

Generalization guarantees (see [CoDANN20, Section 5.3]) typically provide confidence bounds

for the out-of-sample error (performance on unseen data) as a function of the in-sample error

Ein(f̂ , Dtrain, m) =
1

|Dtrain|

∑

(x,f (x))∈Dtrain

m
(

f̂ (x), f (x)
)

,

i.e. the error observed during training.

Bounds on the out-of-sample error (equivalently on the generalization gap, see [CoDANN20,

5.3.1]) precisely provide performance guarantees on the machine learning model, as explained

in [CoDANN20] (see also Chapters 5 and 6). The fact that it is possible to ensure correct

behavior on unseen data (but satisfying the correct distribution) is the basis for deploying

machine learning in safety-critical settings.

As described in [CoDANN20, Section 5.3], these bounds might come from complexity-based

approaches (complexity/capacity of the model class and/or of the data, etc.), testing, or a

combination of both.

Role of the training process An important remark is that the bounds will usually not depend

on how the model was obtained from the class of models considered (e.g. all possible weights

on a given architecture), but only on characteristics of the class (e.g. number of layers) and

the data (size, structure. . . ): see [CoDANN20, Section 5.3].

For example, classical Vapnik–Chervonenkis (VC) bounds have the form:

with probability > 1− δ

over all iid-sampled datasets of size |D|,

the generalization gap is

≤

√

dvc · log
(

2|D|/dvc
)

+ log(1/δ)

|D|
,

where dvc is the VC-dimension of the model class. For a neural network with L layers, W

weights and ReLU activations, Bartlett et al. [Bar+19] proved that dvc = O(WL logW ) (see

the paper for the exact hypotheses). Therefore, the bound above only depends on the model
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architecture (namelyW and L), |D| and δ, but not on the training process. This is similar to the

fact that the final bounds do not depend on the process followed during the training/validation

cycle, only on the number of such cycles (assuming a classical process).

In particular, the training process (optimizer, number of epochs, etc.) is in theory irrelevant.

However:

• This does not mean that an arbitrary function f̂ : X → Y achieving an acceptable in-

sample error can be used: the model has to come from the class of models to which the

generalization bounds apply.

• Some generalization bounds (see [CoDANN20, Section 5.3.6]), such as the ones based

on compression and/or PAC-Bayes bounds, require additional optimizations or transfor-

mations of the models. Nonetheless, the final bounds will usually still not depend on the

behavior of these steps, but only on their result.

• One might want to retain the optimization process as part of the argument.

– For models searched through convex optimization, one might be able to bound the

error directly from parameters such as the number of iterations.

– For models obtained through a non-convex optimization problem (e.g. neural net-

works), it is significantly more difficult to obtain guarantees from the optimization

process. Nonetheless, the behavior during training (e.g. smoothly decaying train-

ing and validation losses) could be part of a qualitative safety argument, as sanity

checks. Generalization bounds might actually be derived similarly (e.g. noise stability

around the weights obtained after gradient descent [DR17]).

3.7.3 Applying generalization guarantees to the transformed models

In Section 3.7.2, it was noted that generalization guarantees usually depended on the in-sample

error Ein(f̂ , D,m), the dataset D and the class of models to which f̂ belongs, but not on the

training process or how f̂ was obtained.

This implies that these guarantees could be also obtained for the final model T f̂ operating the

inference environment directly, e.g. by computing

Ein(T f̂ , D,m) (3.3)

on the inference environment, with T a composition of multiple transformations (abstracting

the model, optimizations, etc.; see Sections 3.4 and 3.5).

The Independent data and learning verification step of the W-shaped process as described

in [CoDANN20, Section 6.1] includes

• the evaluation of Ein(T f̂ , D,m)

• the investigation of possible discrepancies with Ein(f̂ , D,m)

but one could use the latter (with one or several of the datasets) instead of the former for

generalization guarantees, see Figure 3.14.

Abstract function vs implementation Section 3.4.1 explained the important distinction be-

tween an abstract representation of a computational graph and its implementation. General-

ization guarantees apply to mathematical representations and not to implementations, so the

above makes the assumption that the inference environment provides the guarantee that the

abstract representation of T f̂ and its execution correspond (up to precision-related errors that

can be taken into account in the generalization bounds, see [CoDANN20, Chapter 5]).
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Learning environment Inference environment

Ein(f̂ , D,m) Ein(T f̂ , D,m)

Generalization guarantees Generalization guarantees

T

Traceability

Figure 3.14: Two ways of obtaining generalization guarantees for the inference model in the

inference environment (boxed): Transferring generalization bounds from the learning to the

inference environment (dotted arrows), or directly obtaining them for the target model/envi-

ronment (solid arrows).

Advantages of the approach This has the advantage that:

• The bounds side-step the risks related to post-training transformations, as they apply

directly to the model/platform to be used during operations;

• Similarly, this might prevent part of the concerns on the learning environment, in particular

the need of ensuring that the hardware and software implement exactly the abstract

computational graph declared in the top-level framework (see Section 3.4.1);

• The preservation of properties after transformations therefore does not have to be ana-

lyzed with the same level of rigor (which might be impossible in the cases shown above).

Only some level of traceability is required.

• Generalization bounds are derived on the class of transformed models. For example, if the

learning environment considered all possible weights on a given architecture, the inference

environment might have to consider pruned or quantized versions. As the transformed

models are usually simpler (this is part of the goals of the post-training transformations),

the bounds might require less data to arrive at the desired performance. The survey

in [CoDANN20, Section 5.3] mentioned generalization approaches based on compression

(such as [Aro+18]), that actually force such transformations.

Possible risk or difficulties On the other hand, possible drawbacks are that:

• It might prove difficult to compute (3.3), given that the inference platform is not designed

for high data throughput, see Table 3.1.

• Generalization bounds must be derived on the class of transformed model, and might not

be readily available or simple to obtain in all cases (to contrast with the corresponding

advantage above).

• The traceability between the learning and inference models/environments is not as direct.

Section 3.7.2 explained that the training process is in theory irrelevant, but might provide

additional points to the overall safety argument.

It is important to remark that even if the link with training is changed, the link with data (and

therefore with the first 2 steps of the W-shaped process) remains, as (3.3) is evaluated on the

data.
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3.7.4 Summary

From the considerations in Section 3.7 and the information surveyed in this chapter, it ap-

pears that a possible sound strategy to handle the inevitable post-training transformations and

complexity of the learning environment is to:

1. (Model training) Optimizations that require additional training such as quantization or

pruning are done directly during the original training phase(s).

2. (Learning process verification) Evaluate the generalization ability of the trained model

and analyze the behavior of the learning processes.

3. (Model implementation) Evaluate the impact of transformations that bring the trained

model to the inference model (including environment-to-abstraction and vice-versa),

e.g. through one of the conditions from Section 3.6.1. This is mostly done for traceability

reasons.

4. (Inference model verification and integration) Properties that cannot be shown on the

learning environment or be carried over through transformations with enough assurance

(e.g. generalization guarantees) can be verified on the inference environment, which is

possible and valid given the discussion in Section 3.7.3.

In any case, differences between the trained model and the inference model should still

be analyzed (e.g. values of the in-sample errors on the various datasets).8

In all cases, the link between the learning and inference environment is maintained. The strin-

gency of the verification in the second step will depend on whether these properties (e.g. gen-

eralizability) are also directly demonstrated on the inference model or indirectly (through con-

servation of model properties).

The focus above was put on generalization guarantees, but similar considerations would apply

to other properties.

3.8 Conclusion

This chapter analyzed the particularities of the learning and inference environments, where

machine learning models are respectively developed and deployed.

The learning environment resembles a classical software development environment, but unlike

compilation of code into a binary, the whole training process influences the output, from data

and model implementation on high-level frameworks to training on specialized hardware.

Naturally, the inference environment is very similar to classical avionics software and hardware,

however there are particularities due to the specialized hardware that might be required to run

neural networks and their massively parallelized operations.

The steps required to pass from the learning to the inference environment were reviewed:

passing from a model tied to an environment to an abstract representation and vice-versa,

possibly with optimizations such as quantization, pruning and tuning. See Figure 3.13.

Throughout the chapter, risks attached to both environments and related processes were dis-

cussed.

Finally, approaches to mitigate these risks and meet the requirement of performance guarantees

during operations were analyzed, in particular by reviewing machine learning assurance theory.

8For example, if performance guarantees are obtained from the in-sample error on the inference environment,

this value being close to the corresponding one for the original model in the learning environment is a useful

sanity check. This would be implied by the (likely unreachable) functional equality.
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Chapter 4

Explainability

4.1 Introduction

The concept of explainability of AI/ML systems is one of EASA’s building-blocks for AI trust-

worthiness [EAS20], along with Trustworthiness Analysis, Learning Assurance, and Safety Risk

Mitigation.

These buildings-blocks aim in particular at fulfilling the AI Ethics Guidelines from the European

Commission High Level Expert Group [EGTA]: accountability, technical robustness and safety,

oversight, privacy and data governance, non-discrimination and fairness, transparency, societal

and environmental well-being.

Definition from EASA’s roadmap

The EASA concept paper [EAS21] gives the following preliminary definition:

[Explainability] deals with the capability to provide the human with understand-

able and relevant information on how an AI/ML application is coming to its results.

As noted by Lipton in his seminal article [Lip18], an issue with the notion of explainability is that

it has been widely studied by different communities (philosophy, statistics, machine learning. . . )

and therefore possesses several, sometimes conflicting, definitions. Some of these also show

the circularity observed here (explainability → explanation). To progress towards regulatory

guidelines, it is therefore important to reach a definition that is as precise as possible, while

being generic enough to not fundamentally contradict existing ones or rule out use cases.

The preliminary definition already suggests that the meaning of “human understandable” will

need to be agreed on.

The following sections inquire about the definition of explainability, review existing academic

works, discuss requirements in the context of ML-based avionics software, identify remaining

steps to achieve explainability in the context of the W-shaped assurance process from [Co-

DANN20]. Possible solutions for the use case analyzed in this report will be discussed in Sec-

tion 6.5.

4.2 Defining explainability/interpretability

The Merriam–Webster dictionary [MW] defines “explain” as “to make known / plain or under-

standable, to give the reason for or cause of ”, “to show the logical development or relationships
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of ”, and “interpret” as “to explain or tell the meaning of; present in understandable terms”.

The following will make a conscious effort to not assign a more specific meaning to these terms

than the above, unless explicitly mentioned. Indeed, the goal of this chapter is not to create

yet another definition (see again [Lip18] and the widely cited survey [Gui+18] for discussions

about the overabundance of specific definitions), but to categorize the existing and possibly

future ones, and understand the relevance to certification of machine learning applications.

For the same reason, no explicit distinction will be made between “explainability” and “inter-

pretability”, as their respective definitions will vary between groups and authors. Rather, the

considerations below will apply to both, regardless of the definition.

4.2.1 Categorization of explanations

Three dimensions of explanations emerge naturally from the generic dictionary definitions.

See Table 4.1 for the categorization of explanations that follows from these.

Object System/Output

Recipient Regulator/system designer/user

Understandability/ Time and expertise required

transparency Simulatability, decomposability, algorithmic

Table 4.1: Properties of an explanation.

The object of the explanation It could be either:

1. The system itself (a priori/global explanation).

2. An output of the system (post-hoc/a posteriori/local explanation).

Naturally, one can expect that an important part of the explanation of the system itself (and the

performance thereof) comes from the argument outlined in [CoDANN20], namely following the

W-shaped process. In other words, correct data and learning assurance provide a mathematical

proof of the correctness of the system. This proof is human-understandable given that the

data and learning assurance are. However, this might not be fully satisfactory with respect to

other dimensions, and might need to be complemented with other considerations.

The second object, the outputs, was not considered in [CoDANN20] and will be a major focus

here.

The terminology local/global will be avoided, since these might suggest that the local ex-

planations are minor compared to the global ones. Similarly, the a priori/a posteriori is not

well-suited to the aviation context, since a posteriori suggests “after system operations”, while

output of the systems might need to be explained both during and after operations.

The recipient of the explanation The recipient of the explanation. In the aviation certification

setting, this could be:

• Regulators (who act as domain expert proxies for the public);

• System designers;

• Pilots/operators;

• Investigators in the case of accidents.
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In this setting, output-level explanations are likely to be used by all recipients, and system-level

by all except the operators.

The meaning of plain/understandable Namely, the complexity of the explanation. Of course,

any output from a neural network can be explained by going through the millions of compu-

tations performed, but this might not be enlightening or even possible at the human scale.

Similarly, an explanation given to a pilot during operations needs to be simpler than the one

provided to regulators during an in-depth certification or investigation process. As in [DK17;

Gui+18], two sub-dimensions can be identified:

• The time required for the recipient to comprehend the explanation (e.g. operations vs

certification vs investigation);

• The expertise of the recipient (e.g. pilot vs machine learning expert vs regulator).

There is a natural trade-off between explanation power and simplicity, and the choice of the

explanation to provide will depend mostly on these two dimensions.

The understandability of an explanation is also called transparency. Lipton [Lip18] also distin-

guishes transparency of AI systems explanations at several levels:

• Simulatability : the entire system/model;

• Decomposability : components (model parameters, inputs, computations);

• Algorithmic transparency : the training algorithm.

4.2.2 Examples

It is useful at this point to illustrate the above dimensions.

Human decisions As Lipton [Lip18] observes, the human brain can usually provide fairly trans-

parent explanations of its decisions/outputs. However, at least in the current state of neuro-

science, global explanations are only available when considering decisions that follow from a

precise algorithm. In other words, the human brain is a “black box” outside of cases where an

AI system would also possess a global explanation.

When humans are involved in safety-critical processes, it is assumed that:

• Their training will provide a global and adequately transparent explanation of their de-

cisions (cf. for example the wide use of checklists both in aviation and in the medical

field);

• Even though the human brain has no global explanation, experience over the 200’000

years of existence shows that humans are generally capable of making correct decisions

even for situations outside their training, or at least of explaining their thought process.

System versus output explanations Any deterministic model possesses a system explana-

tion (its definition, namely architecture and learned parameters), which also provides output

explanations, by simply going through the computations. However, these might not be trans-

parent/understandable, even to a domain expert. This is the case e.g. for neural networks with

their millions of weights. Usually, output explanations trade generality for simplicity.
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4.3 Explanations for ML-based systems

4.3.1 System-level explanations

Given that deterministic ML-based systems (such as those discussed in [CoDANN20]) always

admit system-level explanations, one should examine the transparency and recipients of such

possible explanations.

Simple models A small linear model (say with less than ten variables, all having an explicit

meaning) and a small decision tree are two examples of machine learning models whose defi-

nition themselves provide an almost fully transparent system-level explanation. More precisely,

the expertise and time required are minimal, the explanation is simulatable and decomposable,

and common training algorithms are simple and understandable by anyone with knowledge in

statistical inference.

Object System-level, therefore output-level

Recipient Minimal expertise needed

Understandability/ Fully transparent:

transparency Simulatable, decomposable, algorithmically transparent

Table 4.2: Explanations for a “simple” machine learning model.

Complex models/neural networks On the other hand, a deep neural network usually has mil-

lions of parameters/weights without explicit/straightforward meaning, so that the explanation

given by its definition cannot be deemed understandable by a human, and making sense of how

the weights generically lead to a decision is beyond the limits of the human mind.

However, it is possible to provide a global explanation different from the model itself that

provides better transparency. This is actually at the core of the [CoDANN20] report. Indeed,

the association of data (that drives the function), the W-shaped process and the mathematical

arguments explaining generalization/learning assurance together provide a global explanation

that has algorithmic transparency and partial decomposability.

• The recipient would be any domain-expert for the data (e.g. pilot) and a machine learning

specialist for the learning assurance argument. The latter is performed by the applicant,

who could rely on results accepted by the scientific community.

• The time required to understand the explanation is the time to go through the data (which

has to be annotated by humans anyway) and to go through the mathematical/statistical

arguments and the training/evaluation processes.

• There is no decomposability of the parameters, but there is clear decomposability with

respect to inputs and computations (a deep neural network is usually a clear sequence of

operations such as convolutions, max poolings, etc.).

Still, activities such as analyzing features of convolutional neural networks might provide

enhanced transparency from the decomposability point of view.

Altogether, the learning assurance process described in [CoDANN20] provides stronger global

explanations than those available for complex human decisions. Humans overtake machines in

their tested ability to reason, but empirical evidence does not provide global explanations.
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Object System-level, therefore output-level

(but there might be more transparent output-level explanations)

Recipient Domain expert (data) and ML specialist (learning assurance)

Understandability/ Time to go through data/mathematical argument

transparency Decomposability: inputs/computations but not parameters

Algorithmic transparency

Table 4.3: System-level explanation for a “complex” machine learning model provided by learn-

ing assurance.

4.3.2 Output-level explanations

Given the above discussion on the availability of beyond-human system-wide explanations for

machine learning models, this section discusses output-level explanations. While system-level

explanations yield output-level ones, it is still desirable to have separate output-level explana-

tions, since they can usually be simpler/more transparent by the power/simplicity trade-off.

It is important to identify the recipients of output-level explanations. They are mainly:

• The user/operator, when the AI system is in use. In this case, the requirements are also

driven by Human-Machine interface considerations;

• Investigation bodies, when analyzing accidents;

• The regulator, during testing phases of certification.

4.4 Classifying and surveying methods

Several challenges arise when surveying the literature on explainability in the setting of AI/ML:

• As mentioned above, Lipton [Lip18] and Guidotti et al. [Gui+18] recall how multiple

authors and/or works have different, sometimes conflicting definitions of explainability.

• The latter survey also posits that most works do not explicitly state what properties their

explanations possess (local/global, recipient, transparency; see Table 4.1).

• As a corollary of the previous point, it is sometimes unclear what benefits/requirements

certain techniques provide/fulfill. Works such as [Ade+18] demonstrated that some

approaches to explainability do not actually provide information on the model, but on the

data itself (see Section 4.6.4 below).

• Methods applying to deep learning might be significantly different from “classical” ma-

chine learning models. Similarly, techniques often apply to a specific type of input (im-

ages, text, sound, sequences of images. . . ), and sometimes even to a specific architec-

ture.
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4.4.1 The classification of Guidotti et al. (2018)

While not giving an explicit definition, the survey of Guidotti et al. [Gui+18] defines black box

models as models that are too complex to admit a transparent system-level explanation (given

specific users). This qualification should be put in contrast to the observation in Section 4.3

that these models might possess a system-level partially transparent explanation to domain

experts, but the considerations in the survey still apply, to seek more transparent explanations.

Categories Guidotti et al. classify research works based on the four different types of problems

they might be trying to solve:

1. Model explanation: providing system-level explanations through a transparent model that

approximates the original model.

2. Outcome explanation: finding transparent output-level explanations;

3. Inspection: giving a visual representation of a model on any dataset;

4. Transparent box design: creating models that, by design, admit a locally or globally trans-

parent explanation (instead of having such models approximating the model of interest).

The last category will not be discussed further here, under the assumption that applications

considered could not be engineered with the required performance level using simpler transpar-

ent models.

Explanators In each category, the authors also analyze the “explanator” (i.e. the human-

understandable explanation) used, among which:

• Simple/transparent models for local approximation: Linear models [ESL, Chapters 3, 4],

decision trees [ESL, Section 9.2], decision rules;

• Inputs importance:

– Numerical: Feature importance [ESL, Sections 3.3-3.4, Chapter 7], sensitivity anal-

ysis [Sal02];

– Visual: Saliency masks, see Section 4.6.4 below.

• Prototype selection [ESL, Chapter 13]: a datapoint, either from the development datasets

or derived from them, similar to the input.

• Neural network activations/filters: looking inside the neural networks (by itself, or for a

given input). See Sections 4.5 and 4.6 for examples.

The reader is referred to [Gui+18] for the full classification.

4.4.2 Focus of this chapter

The following will focus (as the rest of the report and [CoDANN20]) on convolutional neural

networks applied to images.

However, one may easily believe that there are simpler techniques for simpler models and similar

techniques for different kinds of inputs. In addition to [Gui+18], the book [Mol19] gives an

overview of methods that apply to numerical and textual data.
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4.5 System-level methods

A convolutional neural network model can generally be seen as the composition of:

• An architecture: a sequence of convolutions, activations and other operations (e.g. pool-

ing).

• Parameters of the relevant operations, most importantly the weights of the convolutional

filters.

Given that the number of parameters of deep neural networks can easily reach millions, it is

unfeasible to provide a human-comprehensible explanation for all of them. Instead, one can rely

on techniques to visualize them (indirectly or directly), given that humans can easily process

large amounts of visual information. There exist many methods (see the survey [Qin+18]),

and the next sections review three main categories.

4.5.1 Filters visualization

It should be recalled that one of the reasons to consider convolutions instead of fully connected

layers is to share parameters and reduce their overall number. Each convolutional layer is

determined by f filters/kernels of size w × w and depth d , where d corresponds to the depth

of the previous layer (d = 3 on the first layer for RGB images). See Table 4.4 for an example.

Layer Dimension Filter size Number of filters

Input 224× 224× 3 11× 11× 3 96

2 55× 55× 96

3 27× 27× 96 5× 5× 96 256

4 27× 27× 256

5 13× 13× 256 3× 3× 256 384

6 13× 13× 384 3× 3× 256 384

7 13× 13× 384 3× 3× 384 256

8 13× 13× 256

Table 4.4: The convolutions in AlexNet [KSH12].

A straightforward idea is therefore to visualize these filters as 2D images. This is elementary

for a convolutional layer applied on the input, as it will be composed of a set of filters of shape

w × w × 3, which can be seen as a set of 2D RGB images (or triplets of monochromatic

images). The example in Figure 4.1 makes use of that fact to visualize the filters in an early

layer of a CNN. However:

• After the first layer, there will usually be more filters, of higher depth and smaller

width/height (but with higher receptive field). For example (see Table 4.4), the fifth

and sixth layer of AlexNet contain 384 filters of depth 256 and width/height 3. Some

more complex visualization schemes might be used, but this quickly loses human under-

standability.

• It is not clear how that improves the understanding of the network. Even if all filters

were visualized, the way they act and interact to produce the final output from a given

input might not be more transparent.
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(a) Trained model.

(b) Untrained model.

Figure 4.1: Visualization of the 32 filters of size 7 × 7 × 3 on the first convolutional layer of

a CNN trained for aircraft detection. One colum shows the three channels of a filter. For

comparison, the filters of the same architecture, but without training (random initializations

of parameters). In both cases, the images have been upsampled for clarity.

• Filters that contain noisy patterns might be an indication of a network that has been

undertrained, but the converse is not an indication that the model has reached any kind

of convergence. One should not acquire a false sense of trust by looking at filters only.

In conclusion, filter visualization tends to suffer from the same dimensionality restrictions as in-

spections of the weights themselves, and therefore hardly provides a more human-understandable

explanation of the behavior of the network. While not providing real explainability, they can still

serve as a useful sanity check. Understanding filters might also be relevant in the context of

pruning (see Section 3.5.3, [Bla+20]), given that some techniques remove parts of the network

based on filter values.

4.5.2 Generative methods

A popular method to understand the role/importance of a part of a deep neural network, be

it the output or an intermediary activation, is to generate inputs that maximize this element.

Formally, for a model f̂ : X → Y and an intermediary value represented by g : X → R, one

computes

x0 = argmax
x∈X

(

g(x)− R(x)
)

,

where R is a regularizer that incentivizes the creation of “natural images” rather than inputs

that artificially maximize g. For example, R can simply be the ℓ2 norm. The optimization

problem can be solved by gradient ascent, similarly to the way the model is trained in the first

place (optimizing over the input rather than the weights).

This has the advantage that the input space is by definition interpretable.
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Figure 4.2: Maximally activating images generated from random noise: Of the images above,

each one has been designed to yield a particularly high value for one of the 32 activations at

an early stage of a CNN, which was trained to detect aircraft. The corresponding optimization

process starts with a random noise image.

For example, g could be:

• In the case of a model f̂ : X → [0, 1]n performing classification into n classes and

returning probabilities for each class, g = f̂i , the score of the ith class;

• The value of an activation on some intermediary layer.

This method was introduced in [Erh+09], and applications to modern CNNs for supervised

learning were studied in [SVZ14]. Figure 4.3 is based on an example from the latter in the

classification case, while Figure 4.2, inspired by [Yos+15], illustrates the second case for acti-

vations on an early layer of a CNN. In both cases, the network is similar to AlexNet.

Important observations are that (See [Yos+15]):

• Features appear even when looking at single activations (“locality”);

• Several aspects of the objects seem to be learned rather than only discriminative ones;

• Secondary features are learned implicitly.

However:

• Only one (or a finite number) of images are sampled, which does not give a complete

view/explanation of all inputs that might maximize g/yield a given output.

• The optimization problem does not have a unique solution, and multiple images, some-

times fairly different can be obtained by changing hyperparameters. Usually, papers

present carefully selected examples that are “most interpretable”, which presents the

risk of human selection bias.

• In the case of activations visualization, this suffers the same dimensionality problem as

before.

Note that this method and the one in the previous paragraph are in-between Inspection and

Model explanation in the classification from Section 4.4.1, in the sense that they do not

really provide a system-level explanation, but also do not depend on a dataset (outside of the

training/validation datasets). Rather than reflecting an issue in the classification of [Gui+18],

this illustrates that these two methods might not be of significant help towards providing

missing transparency.
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(a) Class “helicopter”. (b) Class “background”.

Figure 4.3: Input images maximizing the probability of a given class in a fixed bounding box

(in red), for an aircraft detection neural network, starting from random noise. Note that the

right-hand side image still contains a small object that might be assimilated to a helicopter,

because the optimization is also affected by other bounding boxes than the one selected.

Nonetheless, both can act as sanity checks, in the sense that their output is not an explana-

tion/guarantee of correct behavior, but might help uncover faulty behaviors (e.g. if the image

that maximally activates a class contains representations of a totally different class).

4.5.3 Maximally activating inputs

Given a quantity g : X → R of interest inside the network, instead of the optimization outlined

in Section 4.5.2, a simpler method is to feed a set of images (e.g. the training, validation or

test sets) into the network, and record the inputs for which g is maximal.

An example for this is given in Figure 4.4, where g is the average over a group of activations.

In the case of classification, a similar technique can be used to find images where the network

is the most confident in the predicted class.

4.6 Output-level methods

The previous methods were working on the model level, and it was noted that they might provide

useful sanity checks, but presented challenges to serve as transparent system-level explanations.

The following techniques solve either the Model explanation (locally), Outcome explanation

or Model inspection problems from the classification of Guidotti et al. from Section 4.4.1,

therefore in the category of output-level explanation according to Table 4.1.

4.6.1 Local approximation

As explained in Section 4.3, simpler models are more transparent by definition, but they will

often not be good enough for complex use cases. Similarly, approximations of a complex model

by a simpler model (i.e. the Model explanation task in the classification of Guidotti et al. from

Section 4.4.1) might not be possible with having both a faithful and transparent approximation.

However, the problem becomes easier if one relaxes the faithfulness of the explanation to be

only true locally. The locality of the approximation can be around a given input point, or in a
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Figure 4.4: Maximally activating input images for a CNN tasked with the detection of aircraft:

Each cluster of 9 maximizes the mean over a certain group of activations in an intermediary

layer of the CNN.

region of interest for an explanation.

There is usually a natural trade-off between:

• The quality of the approximation (how close the original and explanator model are);

• The locality of the approximation (the size of the region where the approximation is

satisfactory);

• The transparency of the explanator model.

This trade-off is expressed by Ribeiro et al. [RSG16] as

E(g) = L(f̂ , g, πx0) + Ω(g), where:

• f̂ : X → Y is the complex model under analysis;

• g is a transparent model/explanator;

• Ω a measure of the complexity (and therefore transparency) of g;

• πx0 a density function expressing locality around a point x0 ∈ X;

• L a measure of the quality of the approximation of f̂ by g around x0 (with respect to

πx0).

For example, if X = Rn and Y = Rm, one may set

L(f̂ , g, πx0) =

∫

X

||f̂ (x)− g(x)||2πx0(x)dx ,

i.e. the difference between f̂ and g weighted by the locality measure, and if g is a linear model,

Ω(g) might be the number of non-zero variables or their norms. If g is a decision tree, Ω(g)

might be its size.
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(a) Original image (b) Resulting activations

Figure 4.5: CNN activations visualized: The picture to the right shows a subset of the acti-

vations of a CNN’s intermediary layer. The CNN at hand has been trained to detect aircraft.

Light pixels correspond to high activations. The input image can be seen on the left. The

input image is of size 512 × 512 × 3 pixels (3 color channels are present) and the resulting

activation has shape 1× 32× 128× 128, which is due to the convolutional mechanics of the

network. Each of the 12 pictures to the right visualizes one of these 32 activation matrices of

size 128× 128.

This is best understood when g lies in a family of transparent models G, with the other quantities

fixed, and one tries to find the best trade-off with respect to the above, i.e. argming∈G E(g).

This formulation has the advantage of allowing to control the trade-off between approximation

power and transparency explicitly. In most cases, the optimization problem is intractable, but

its solution can be approximated.

LIME The Local Interpretable Model-agnostic Explanations (LIME) framework of [RSG16]

gives a general method for doing so when f̂ : Rn → R and g is a linear model with at most

K features, without requiring internal knowledge of f̂ : one simply samples points around x0
(according to πx0), obtain their predictions from f̂ , and train a linear model using these and

the predictions, limiting to the use of only K features from the original data.

Selecting locality The definition of the neighborhood (equivalently of the density πx0) is deli-

cate and depends on the input space X. For images, it would not make sense to look at pixel-

level perturbations, as the resulting data will be too complex for the simpler model, and these

might be too fine to even show changes in the classification. Instead, Ribeiro et al. [RSG16]

suggest using r clusters of connected pixels (“super-pixels”) in x0 that can be grayed out. The

neighborhood of x0 is identified to {0, 1}
r , with x0 identified to the unit vector 1.

4.6.2 Activations visualization

Given an input image, a straightforward method to delve into the computations happening in

the CNN that yield the output is to visualize the activation layers. This is dual to the filters

visualization exposed in Section 4.5.1, with a lower dimensionality (according to Table 4.4,

there are between 96 and 384 activations in the intermediary layers, with a maximum size of

55× 55).

This allowed Yosinski et al. [Yos+15] to create a tool that allows visualizing activations layer

by layer in real time (see Figure 4.5). They compared cases where the network performs well

to ones where it does not, and observed different behaviors in the activations.

Like with filters, analyzing activations can also provide insights towards pruning (Section 3.5.3,

[Bla+20]) and about the training process (see the references in [Lu+20]), but this is off-topic

for explainability.
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4.6.3 Activations visualization in the input space

Instead of visualizing activations themselves, a category of methods attempts to provide a

visualization in the input space, similar to Section 4.5.2.

Given an input image x0, one would like to understand which input pixels have the largest effect

on the activation g : X → R.

One of the first methods is the DeconvNet of Zeiler and Fergus [ZF14], which attempts to

reverse the forward operations to obtain an input that produced the activation. The authors

discuss the evolution of such features during training, invariance to transformation, and the

general type of each feature at each level. The first layers tend to have high-level features such

as corners, colors or patterns, while the last layers might show complete objects.

The DeconvNet method was shown by [SVZ14] to be very close (up to the effect on the

activations functions) to the following simple idea: one may approximate g linearly (as in Sec-

tion 4.6.1) as

g(x0) ≈ w(x0)
T
x + b, w(x0) =

∂g

∂x

∣

∣

∣

x0

and the magnitude of each element of w(x0) denotes the influence of the corresponding pixel

in x on the value of g, around x0. The derivative can be found by back-propagation (over

the input instead of the weights), and [SVZ14, Section 4] shows the quasi-equivalence of the

DeconvNet and this back-propagation.

In the classification case f̂ : X → [0, 1]n, this method can also be applied when g is the

class score fi , providing an idea of which pixels in the input have the largest influence on the

score, for the given image. This is an example of saliency map, discussed in the next section.

See [SVZ14, Figure 2] for an example.

4.6.4 Saliency maps

A natural question to ask for models operating on complex inputs is

Which parts of the input were used, and how/to which extent, to arrive at the

output?

The importance of this question is particularly clear for models working on images, see Fig-

ure 4.6.

(a) Prob. 1.00 (b) Prob. 0.91 (c) Prob. 0.99 (d) Saliency map.

Figure 4.6: Saliency map computed from occlusion. A rectangle filled with the mean image

color (represented as black here for clarity) is moved over the image, occluding a small region

at a time. The intensity of each pixel in the saliency map represents the decay of the probability

that the image contains a helicopter (as measured by the neural network) when this pixel is

occluded.
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These output-level/outcome explanations can have multiple uses, such as providing an addi-

tional input to the operator or uncovering potentially faulty behaviors. For example, Ribeiro et

al. [RSG16] trained a small dog vs wolf classifier that turned out to use snow as a discrimina-

tive feature instead of the animal, and were able to uncover this on an unseen image using a

saliency map (see Figure 4.7).

(a) Husky classified as wolf. (b) Explanation.

Figure 4.7: Saliency map detecting faulty discriminative features, adapted from [RSG16, Figure

11].

Some popular techniques There exist many techniques to compute saliency maps, and these

usually depend on:

• The meaning of the visualization (class probabilities, top class, distance between top 2

classes, gradient. . . );

• The “visual quality” of the saliency maps produced;

• Whether they are model-agnostic, or specific to certain types of models/architectures;

• Whether they need access to the model internals;

• Whether they are based on optimization or not.

The simplest method, discussed by [ZF14], is to perturb parts of the image (e.g. replacing by

a constant color, blur or noise), and observe whether the prediction changes. In the context

of classification, that might mean observing the probability of the originally predicted class, or

the predicted class for the occluded image. This is illustrated in Figure 4.6.

The gradient/backpropagation method of [SVZ14] was already discussed in Section 4.6.3. It

visualizes the gradient of the class probability with respect to the image, and therefore shows

the local influence of each pixel on the probability.

Guided backpropagation [Spr+15] is a variant that only backpropagates positive gradients and

activations, the idea being to improve the aspect of the saliency maps by focusing on what

makes the given prediction, rather than what does not. Like [SVZ14], this can also be used

for features visualization.

CAM [Zho+16] is another popular method for a specific architecture (global average pooling

followed by a fully connected layer at the end of the network), that was then adapted to generic

architectures as Grad-CAM [Sel+17], as well followed by several variants.

The LIME method on images presented in Section 4.6.1, using super-pixels, also provides a way

to create saliency maps: the explanator linear model will use a small number K of super-pixels

to arrive at the predicted value at x0, and the K coefficients can be inspected to understand

the influence of each super-pixel; see Figure 4.8.
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(a) Original image. (b) “Electric guitar”. (c) “Acoustic guitar”. (d) “Retriever”.

Figure 4.8: Using LIME on super-pixels for saliency maps, adapted from [RSG16, Figure 4]:

original image and explanation for three classes.

Criticism and risks Given the large amount of saliency map techniques that are available and

keep being developed, Adebayo et al. [Ade+18] analyzed methods including the ones discussed

above, and came to the conclusion that several did not provide any actual insight on the models.

Quoting the first page of the paper:

“some widely deployed saliency methods are independent of both the data the

model was trained on, and the model parameters”

The authors performed a set of qualitative and quantitative tests on methods, including:

1. Model parameters randomization: This compares the saliency maps for a trained model

and an untrained one, and therefore indicates whether the saliency maps depend on the

learned weights.

2. Data randomization: This compares the saliency maps between a trained model and

a model trained on the same data, but with (non-consistently) permuted ground truth

labels, showing whether the saliency map depends on the relationship between input and

labels and generalizable aspects (the second model memorizing the data). See [Ade+18,

Figure 6].

3. Comparing the saliency map to the output of a single edge detector. See [Ade+18,

Figure 1].

In short, it turns out that the gradient method from [SVZ14] and Grad-CAM from [Sel+17]

pass the sanity checks, while in particular Guided-backprop [Spr+15] does not.

The paper of Rudin [Rud19] underlines similar issues, see Figure 4.9.

As in the previous methods, this emphasizes a risk of explainability methods, being that they

might give a false sense of confidence or understanding through human confirmation bias, and

the need for precise requirements a priori.
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(a) Original image. (b) “Husky”. (c) “Flute”.

Figure 4.9: Adapted from [Rud19, Figure 2]: “Saliency does not explain anything except where

the network is looking”.

4.7 Working groups around explainability

In the following, an overview of the most important working groups in the field of explainability is

provided. Given the context of this report, the focus is put on groups that research either model-

agnostic methods that apply to image processing or methods targeting images specifically.

Each working group is presented with regard to the background of their research, a description

of their contribution and a classification of the latter with respect to the classification framework

presented in Section 4.4. The latter is contained in the columns “Object of Explanation” and

“Explanation Effect” of the respective summary tables.

4.7.1 Fraunhofer Heinrich Hertz Institute: XAI Group

This group around researchers Wojciech Samek (head of the XAI group1 at Fraunhofer Heinrich

Hertz Institute) and Grégoire Montavon (Technical University of Berlin) has published one

book [Sam+19] and several papers on explainability, especially but not only in the context of

deep neural networks and image classification. Three of their papers in the area are highly

cited ones [MSM18; Mon+17; Bac+15]. Regarding the motivation behind their research, they

identify four main benefits of explainable AI systems [SWM17]:

• Verification: Such systems allow humans to understand the decision-making process

and therefore to see whether it is generally logically sound. In particular, obviously

unreasonable decision processes that do not generalize well can be identified at an early

stage.

• Improvement: Understanding a system’s decision-making process could give a better

understanding of its weaknesses and therefore provide a promising starting point for

improving it.

• Learning: There are tasks in which AI systems significantly outperform humans. Under-

standing the processes that make AI systems so good might therefore generate novel

insights into these tasks.

• Compliance to regulation: In many use cases, notably safety-critical ones, the missing

understanding of an AI system’s inner workings is problematic from a regulatory stand-

point. In these use cases, making AI systems explainable is a necessary step in employing

them at all.

1https://www.hhi.fraunhofer.de/en/departments/ai/research-groups/

explainable-artificial-intelligence.html
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Approach Object of Explanation Explanation Effect

Layer-wise relevance prop-

agation (LRP) [Bac+15]

Particular outputs General explanation frame-

work. Can be used to cre-

ate saliency maps for im-

ages

Deep Taylor decomposition Particular outputs Can be used to create

[Mon+17] saliency maps for images

Table 4.5: Summary and classification of contributions by Samek’s explainable AI group and

its collaborators.

The group has published multiple surveys that give an overview on some popular explainability

techniques. Among the ones they mention are activation maximization [MSM18, pg. 2], sen-

sitivity analysis [SWM17, pg. 3] and simple Taylor decomposition [MSM18, pg. 4].

In addition, they have also presented two entirely new approaches concerning explainability,

namely:

• Layer-wise relevance propagation (LRP) [Bac+15]: This is a somewhat model-agnostic

method as it applies to any model that computes its decision in different layers (e.g. deep

neural networks). The relevance of different input variables to specific predictions is

explained by propagating a measure of relevance from output to input in a layer-wise

manner while conserving the total relevance in between different layers. This can be used

to generate saliency maps.

• Deep Taylor decomposition [Mon+17]: This is a specific explanation approach, though

it also explains the relevance of different input variables to specific model predictions. It

can also be used to generate saliency maps.

4.7.2 DARPA’s Explainable AI program

In May 2017, DARPA (Defense Advanced Research Projects Agency, a branch of the US

government) launched a 4-year research program into explainable AI [GA19]. The program’s

focus is on explainability as a means to create AI systems that can interact with human users and

is an umbrella for a multitude of different explainability research projects by different research

groups.

Approach Object of Explanation Explanatory Effect

Varies between subgroups Varies between subgroups Varies between subgroups

Table 4.6: Summary and classification of contributions by the subgroups within DARPA’s

explainable AI program.

The range of topics covered by DARPA’s program is quite broad, and while some projects

target computer vision problems, others examine more general approaches to explainability or

even psychological considerations. In general, the contribution of each subgroup is broken down

into two areas: “explainable models” and “explanation interfaces”, referring to the underlying

machine learning models and the way in which a result is explained to the user, respectively.
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4.7.3 Duke University: Prediction Analysis Lab

Cynthia Rudin and her Prediction Analysis Lab2 at Duke University (formerly at MIT) have

produced multiple highly cited articles on explainability. Rudin’s research focuses on applications

of machine learning in healthcare, criminology and power infrastructure. She has emphasized

the importance of deploying transparent (ergo explainable) models instead of black-box ones

in high-stakes use cases [Rud19].

Approach Object of Explanation Explanatory Effect

Bayesian rule sets

(BRS) [Wan+17]

Model itself Inherently explainable model

(simulatable and decompos-

able)

Prototype-based NNs

[Let+15]

Model itself Increased model explainability

(insight into a learned aspect

of the model)

Table 4.7: Summary and classification of contributions by Rudin and her Prediction Analysis

Lab.

Rudin and her group have proposed different designs for such inherently explainable ML models.

Two notable ones are:

• Bayesian rule sets (BRS) [Wan+17]: Here, the authors propose a technique to gen-

erate a classification model consisting of a manageable number of if-else-then rules

(see [Wan+17, Figure 1]). The advantage of this is that these if-else-then rules are

easily comprehensible by humans.

• Prototype-based neural networks [Let+15]: This is a special neural network architecture

in which the model is enforced to learn different prototypes and make decisions based

on how inputs relate to these different prototypes. Since the learned prototypes can be

inspected, this generates additional insights into the model.

In terms of classification, models consisting of Bayesian rule sets allow interpretation at the

model-level. Due to their limited complexity and their if-else-then character, the generated

models are simulatable: It is easy to take an input and go through a number of if-else-then

rules. Decomposability is also given since such models can be decomposed into a limited number

of concrete and inherently mutually exclusive rules. The prototype-based neural network design

also seeks to clarify aspects of the model itself. However, the proposed class of models are

still not simulatable as they contain neural networks. They are also neither decomposable (no

natural decomposition presents itself) nor algorithmically transparent (the training process still

involves training a neural network).

4.7.4 Shanghai Jiao Tong University: Explainable AI group

Quanshi Zhang’s explainable AI group3 at Shanghai Jiao Tong University has contributed to

multiple highly cited articles regarding explainability of convolutional neural networks. They

argue that an explanation of a CNN’s logic is necessary if humans are to really trust its deci-

sions [ZWZ18].

2https://users.cs.duke.edu/˜cynthia/lab.html
3https://sites.google.com/site/quanshizhang/home/explainableaigroup
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Approach Object of Explanation Explanatory Effect

Interpretable CNNs [ZWZ18] Model (filters) CNN filters tend to represent

decoupled and hence more in-

terpretable object parts

Explanatory graphs for CNNs

[Zha+18]

Model Component and subcompo-

nent relationships that drive

detection are revealed

Decision trees for CNNs

[Zha+19]

Model Decision mechanism is de-

scribed from top-level to ele-

mentary decisions

Quantification of NN input rel-

evance [Che+19]

Particular decisions The relevance of each input

factor to a particular decision

is quantified

Table 4.8: Summary and classification of contributions by Zhang and his exlainable AI group.

Zhang and his co-authors have proposed multiple methods to increase the explainability of

CNNs:

• Interpretable CNNs [ZWZ18]: Here, an altered architecture incentivizes CNNs filters to

represent decoupled and therefore more easily interpretable object parts. For example,

such an interpretable CNN that is trained to detect the presence of cats on images may

have e.g. one filter that corresponds to a face and another one that corresponds to a leg

(see [ZWZ18, Figure 1]). An ordinary CNN, on the other hand, might have filters that

represent mixtures of parts.

• Explanatory graphs for CNNs [Zha+18] are automatically constructed from an already

trained CNN to explain how it detects an object. Simply put, the goal of such a graph

is to explain what object components need to be present for the object to be recognized

as present. In turn, the recognition of object components might require the presence of

object subcomponents, etc. See [Zha+18, Figure 10].

• Decision trees for CNNs [Zha+19]: In this technique, a decision tree is automatically

generated to explain a CNNs decision-making. For this, “decisions” are arranged in a

tree-like structure (see [Zha+19, Figure 2]) that the authors call “explanatory tree”, with

decisions starting at a coarse-grained level (e.g. concerning high-level image features) that

in turn depend on increasingly fine-grained decisions (e.g. concerning more elementary

features) when considering decisions at a deeper level of the tree.

• Quantification of NN input relevance [Che+19]: This technique attempts to explain the

influence of different decision factors of a CNN by assigning their influence on the final

decision a concrete numeric value.

4.7.5 Microsoft Research’s Adaptive Systems and Interaction group

Microsoft Research’s Adaptive Systems and Interaction Group4 researches ways of developing

AI systems that are trustworthy and seeks to increase mankind’s understanding of the principles

behind computational intelligence. They describe their work as “motivated by the goal of

4https://www.microsoft.com/en-us/research/group/adaptive-systems-and-interaction/
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developing systems that can perform well amidst the complexities of the open world, either via

autonomous execution or in their collaboration with people”. While the group comprises more

than a dozen researchers, the works of Marco Tulio Ribeiro and Scott Lundberg are deemed

particularly important to this report.

Approach Object of Explanation Explanatory Effect

Local interpretable model-

agnostic explanations (LIME)

[RSG16]

Behavior of model around

a particular input

Model is explained locally

through a simpler, but only

locally valid approximation;

can be used to generate

saliency maps

Shapley additive explanations

(SHAP) [LL17]

Particular predictions The relevance of each out-

put to the model decision

is quantified

Table 4.9: Summary and classification of contributions by Microsoft Research’s Adaptive Sys-

tems and Interaction group.

Techniques proposed by researchers within this group include:

• Local interpretable model-agnostic explanations (LIME) [RSG16]: This is a broadly ap-

plicable interpretation framework and has already been covered in some detail in Sec-

tion 4.6.1.

• Shapley additive explanations [LL17]: Here, a framework is presented that can explain

particular model predictions by revealing which inputs made the prediction more or less

probable.

4.7.6 Google

Google employs a large number of researchers that work on a plethora of different machine

learning topics. Three notable ones in the context of explainability are Been Kim (Google

Brain), Karen Simonyan (Google DeepMind) and Mukund Sundararajan.

Contributions by researchers at Google include:

• MMD-critic [KKK16]: This is a technique that aims to provide a better understand-

ing of a model by generating prototype samples and criticism samples of that model

(see [KKK16, Figure 1]). While prototype samples are samples that can be classified

well by the model, criticism samples are data points that do not fit the model well.

• Testing with concept activation vectors (TCAV) [Kim+18]: This technique aims at

explaining specific model predictions. It specifically applies to image classification and

quantifies the relevance of specific user-defined visual concepts (e.g. stripiness) for the

classification decision (e.g. picture contains zebra). See [Kim+18, Figure 1].

• PatternAttribution [Kin+18]: This is a way of tracing a model’s particular classification

decision back to specific pixels of an image, which gives rise to a saliency map.

• Bayesian case model (BCM) [KRS14]: A clustering framework that both finds clusters

in an unsupervised manner and explains them. The explaining is done by automatically

providing prototypes and important features for each cluster.
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Approach Object of Explana-

tion

Explanatory Effect

MMD-critic [KKK16] Model Insight into the kinds of inputs

that fit the model well vs. the

kinds that do not

Testing with concept ac-

tivation vectors (TCAV)

[Kim+18]

Model Insight into the relevance of vi-

sual concepts to model predic-

tions

PatternAttribution [Kin+18] Particular predic-

tions

Extraction of the most rele-

vant inputs to particular model

predictions

Bayesian case model (BCM)

[KRS14]

Particular outputs

(clusters)

Clustering outcome is ex-

plained by providing proto-

types and relevant features for

each cluster

Visualization of classes learned

by CNNs [SVZ14]

Model Learned classes are visualized

Class saliency extraction

method [SVZ14]

Particular predic-

tions

Extraction of most relevant in-

puts to particular model pre-

dictions

Integrated Gradients [STY17] Particular predic-

tions

Extraction of most relevant

inputs to particular model pre-

dictions; can be used to gen-

erate saliency maps

Table 4.10: Summary and classification of contributions by Google’s researchers.
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• Visualization of classes learned by CNNs [SVZ14]: The idea here is to visualize a class

learned by a CNN by generating an image that is representative of this class.

• Class saliency extraction method [SVZ14]: This technique concerns the generation of

saliency maps. It therefore explains specific model predictions by highlighting the pixels

on the input image that are most relevant to the classification decision, see [SVZ14,

Figure 2].

• Integrated Gradients [STY17]: This is yet another technique to attribute particular model

decisions to specific input parameters and can also be used to generate a kind of saliency

map.

4.7.7 DEEL: Dependable and Explainable Learning

DEEL is a collaboration between institutions from Toulouse (France) and Québec (Canada)

and pursues the goal of AI systems that can be employed in safety-critical applications like

avionics. The project is funded with a budget of 30 million euros and is divided into four areas,

one them being explainability.

Approach Object of Explanation Explanatory Effect

Entropic variable projection

[Bac+18]

Particular predictions Quantification of how the sta-

tus of specific inputs generally

affects class probabilities pre-

dictions

Table 4.11: Summary of contributions by DEEL and affiliated researchers.

Entropic variable projection [Bac+18] is a model-agnostic technique proposed by researchers

affiliated with DEEL. To explain particular model predictions, the method relies on quantifying

the relevance of each input variable to each class of model decisions. For example, in the case

of image classification, this technique can assign each pixel a probability for each class that

expresses how much more likely it is that an image be assigned to this respective class when

this pixel is activated (vs. having background intensity) [Bac+18]. The visualized outcome has

similarities to a saliency map, but explains a model’s classification characteristics in general

rather than explaining one particular prediction. A Python implementation of this technique is

available as part of the package “Ethik AI”5.

4.7.8 NIST’s explainable AI group

The United States of America’s National Institute of Standards and Technology (NIST) runs

a working group on explainable AI 6 as part of their effort to “measure and understand the

capabilities and limitations of [AI] technologies”7. In this context, NIST recently released a

draft whitepaper [Phi+20] in which they describe what they consider the four fundamental

principles behind explainable AI and reflect whether / how existing explainable AI methods and

human explanations fulfill these four principles.

5https://xai-aniti.github.io/ethik/
6https://www.nist.gov/artificial-intelligence/ai-foundational-research-explainability
7https://www.nist.gov/artificial-intelligence/ai-research
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The presented principles are:

• Explanation: Systems deliver accompanying evidence or reason(s) for all out-

puts.

• Meaningful : Systems provide explanations that are understandable to individ-

ual users.

• Explanation Accuracy : The explanation correctly reflects the system’s process

for generating the output.

• Knowledge Limits: The system only operates under conditions for which it

was designed or when the system reaches a sufficient confidence in its output.

Rather than proposing concrete techniques, their contribution aims at laying the conceptual

groundwork for future advances in explainable AI and seeks to initiate a discourse around the

topic.

To compare the four principles proposed in the whitepaper with the classification framework

presented in Section 4.4, the former are more concerned with what constitutes an explanation

in general while the latter distinguishes kinds of explanations based on the explained aspect of

the system and the kind of transparency provided.

Generally speaking, it can be noted that there is a degree of correspondence between the prin-

ciples of explainable AI proposed in [Phi+20] and the considerations on explainability in this

report.

The first principle (“explanation”) is inherently fulfilled by any of the explanation methods

described in Section 4.5 and Section 4.6, as they all try to show how AI systems determine

their output, either by providing system-level (Section 4.5) or output-level (Section 4.6) ex-

planations.

The second principle (“meaningful”) has been thematized in the considerations on the classi-

fication of explainability techniques Section 4.2.1. There, it has been recognized that different

explainability techniques yield differing kinds and degrees of transparency, and this insight is

also addressed in the description of different explainability techniques in Sections 4.5 and 4.6.

Regarding the third principle (“explanation accuracy”), it has been recognized that there “is a

natural trade-off between explanation power and simplicity” (see Page 54).

The fourth principle (“knowledge limits”) has been covered in Chapter 5 and Section 4.8.1:

Instead of looking into ways of detecting insufficient confidence of a ML model, the consider-

ations therein address knowledge limits through a discussion on how one can guarantee that

ML model inputs fall within them in the first place.

4.8 Understanding needs for explainability

The sections above illustrated that there exist many methods to visualize neural networks

and their predictions, but that it is fundamental to set requirements, in particular in light

of [Ade+18; Rud19].

In particular, applying techniques blindly might just produce information that does not actually

provide any arguments towards trust in the system, and worse, might lead to an incorrect sense

of additional confidence.

System-level explanations through generalization As argued in Section 4.3, an analysis

of the neural network as in [CoDANN20, Chapters 6, 9], based on statistical generalization

guarantees (and possibly other methods such as simulation), will provide detailed probability

distributions for the different failure cases of the model. Altogether, this provides a system-level

explanation of its correctness, transparent to the recipient (designer/regulator/investigator).
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Additional activities On the other hand, the following activities would help bridge the re-

maining gaps (discussed in Section 4.3) between “classical” software and software where the

function is mostly learned from data:

• As discussed in Section 5.1 and [CoDANN20], a crucial assumption for the learning

assurance guarantees is that the operational space has been correctly identified, and

the training/validation/testing datasets have been correctly sampled. Explainability, as

defined in Section 4.2, could be used to strengthen this data–learning assurance link as

part of the Independent data and learning verification of the W-shaped process.

• Then, while it is not possible to give global transparency to the model, output-level

explanations can be provided:

– During the system design/certification (this also fits into the previous objective of

verifying the data–learning link).

– During operations, to give additional insights to the pilot/operator about the sys-

tem outputs, helping in decision-making. This is closely tied to Human-Machine

interaction (HMI) considerations.

– Understand failure cases more deeply than them just falling into the admissible

failure probability from learning guarantees. This might be useful during develop-

ment (correct systematic errors), after operations (continuing airworthiness) and

for potential investigations.

The first category of activities is discussed further in the next section, while the second,

more dependent on the use case, is discussed in the context of the traffic detection system

in Section 6.5.

Explainability

Strengthen the

data-learning assurance link

(Data assurance)

Output-level explanations for

Development/certification

Operations (HMI)

Continuing airworthiness

4.8.1 Strengthening the data–learning assurance link

An incomplete specification of the operational space turns out to be one of the most common

pitfalls in real-world machine learning applications, and an important share of “domain bias”

errors arise from the fact that the model uses parts of the data that do not lend themselves

to generalization, unlike what the system designers were believing.

The folklore example (according to [Bra19], which contains an extensive list of real-world cases)

is the tank detection system that relies solely on time-of-day, and Section 4.6.4 introduced the

“wolf vs dog” variant. It is important to note that these errors would definitely violate the

requirements on data from [CoDANN20, Chapter 6]. The “tank detection” example does not

satisfy the very simple assumption that the data should be (in particular) uniformly distributed

in the explicit operating parameters

{time of day} × {presence of tank},

assuming that the system is meant to work at any time of day.
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Figure 4.10: Another example of the kind of unexpected and undesirable input-output rela-

tionships that can be identified with explainability methods. Here, an object detection network

tasked with the detection of aircraft falsely identified a traffic cone as a helicopter (left, screen-

shot from an internal demonstration user interface). Interestingly, the network was trained

using images of R66-type helicopters (right), whose rotors rest on a part that resembles the

triangular shape of a traffic cone.

The “explainability” methods surveyed above could be applied in the Independent data and

learning verification part of the W-shaped process (or earlier) as a complement to the methods

discussed in Section 5.1. These do not add missing hypotheses to learning assurance, but

rather provide additional techniques to recognize a misidentification of the operational space.

They focus on using the trained model rather than ad hoc methods working on the data only.

Like classical testing, these methods should be seen as testing against the null hypothesis that

the model uses the datasets in a way that does not match the operational space, and gathering

enough evidence to reject it.

System-level methods Section 4.5 provided a short survey of system-level methods, and they

all can be used to collect evidence towards the above.

Filters visualization (Section 4.5.1) suffers from dimensionality issues, but the first layers can

still be analyzed, where noisy patterns might reveal a model that might have been undertrained

for the complex task at hand.

Maximally activating inputs (Section 4.5.3) can be used to visualize training/testing datapoints

where the model has extremal behaviors (e.g. maximal confidence among all outputs with a

certain property). Errors uncovered there should however also have been detected during

training/validation/testing.

On the other hand, generative methods (Section 4.5.2) create maximally activating inputs not

present in the original datasets. They might uncover:

• Undesirable artifacts that the model might be using from the data (e.g. brand logo

to classify helicopters as such, or time of day in the context of the tank detection

example [Bra19]).

• Inputs that maximize some outputs while not containing data that should trigger such

behavior.

An arbitrary number of images can be generated (e.g. by varying hyperparameters of the

optimization), and one should pay attention to confirmation bias8.

Finally, the output-level methods from Section 4.6 can all be applied on training/validation/test-

ing datasets. Given their sizes, sampling or automatic analysis might be useful.

8“The tendency to search for, interpret, favor, and recall information in a way that confirms or supports

one’s prior beliefs or values” [Nic98].
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Chapter 5

Safety Assessment

5.1 Out-of-Distribution (OOD) detection

As discussed in [CoDANN20, Chapters 5,6,9], a crucial assumption to guarantee performance

of a machine learning model on unseen data is that the operational space has been correctly

identified. This is a double-sided requirement, concerning multiple stages of the system lifecy-

cle, where both:

• the design data (training, validation and testing datasets) and

• the operational data

must be sampled uniformly from the operational probability space X , as illustrated below.

Remember from [CoDANN20, Section 5.2] that this is the probabilistic statement “D ∼ X |D|”,

including the fact that the points are sampled independently. The term “D iid in X” will be

used interchangeably.

Train, val., test

datasets
Operational space

Input data during

operation

Dtrain, Dval, Dtest X xt1 , xt2 , xt3 , . . .
⊂ ∋

To ensure that these assumptions hold, [CoDANN20, Chapter 6] discussed methods such as:

• Enumerating explicit operating parameters [CoDANN20, Section 6.2.7] (see also Sec-

tion 5.1.2), akin to “classical” requirements design, connected to the system require-

ments/ConOps, and verifying that the parameters for this data are distributed according

to the right distribution.

• Creating a “distribution discriminator” fulfilling pre-set requirements [CoDANN20, Chap-

ter 6.2.8], which might be less transparent/interpretable (in the sense of decomposability,

see Chapter 4) than the operating parameters, but more powerful and less subject to hu-

man bias.

This section aims at giving additional details about both approaches.

Section 4.8.1 has also discussed how what are usually called “explainability methods” can be

seen as additional methods to verify these hypotheses. The techniques discussed there might

also help ensure that the operational space has been correctly identified (as part of the Data

assurance part of the W-shape), which is often an implicit assumption for OOD detection.

Additionally, Chapter 6 will give specific examples related to the use case from Chapter 2.

77
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5.1.1 General remarks on analyzing distributions of images

Goodness-of-fit or anomaly/outlier/out-of-distribution detection are classical and well-studied

topics in statistics/machine learning [Pim+14; Hub+12].

Naturally, it is not possible to provide definitive yes/no answers, and these techniques are

statistical tests that provide evidence for or against hypotheses.

Available methods can in particular be characterized by:

• Whether they are parametric (assuming the distribution is known, or at least some prop-

erties thereof) or not. The distribution of some operating parameters relating directly to

the ConOps might be explicit (e.g. altitude or object sizes), but it would be impossible

to parameterize most image aspects.

• Whether they use the model that will receive the data or operate on the data only

(model-agnostic).

• The dimensionality of the data on which the method can operate.

• The properties of the underlying statistical test: the probabilities of classifying an in-

distribution sample as out-of-distribution and vice-versa.

A challenge arises however when X consists of images, like in the use case considered here

(see Chapters 2 and 6).

Indeed, many methods do not generalize well in high dimensions, in particular due to the curse

of dimensionality (see [ESL, Section 2.5]), with RGB images of size 512×512 spanning 786’432

dimensions. Moreover, another challenge is that the possible images (e.g. ”all images that can

be captured over Switzerland within the ConOps”) occupy only a small subspace/manifold of

this space that is difficult to characterize.

Dimensionality reduction A natural mitigation is to project the full space X onto a smaller

one, with the induced distribution:

X
π
−→ F = π(X ). (5.1)

If a dataset D ⊂ X is uniformly sampled from X (with respect to the corresponding probability

measure), then π(D) ⊂ F will be uniformly distributed in F (with respect to the probability

measure induced by π and X ).

D iid in X π(D) iid in F statement from OOD test in F (5.2)

Equivalently, if π(D) does not have the right distribution in F , then the same holds for D in

X . The reverse implication does not hold in general, in the same way that tests for out-of-

distribution do not provide a definite yes/no answer (see above). However, this provides a way

to test the desired assumption in the lower-dimensional space F . The likelihood of the reverse

implication to hold will depend on the “quality/expressivity” (ideally in a quantifiable way) of

the embedding.

Explicit parameters The “explicit operating parameters” method mentioned above is the sim-

plest example of that: with a careful enumeration of system parameters, one might expect to

create an embedding into a product of simple spaces (intervals, categorical variables. . . ) with

a clear probability distribution (e.g. from the ConOps), where classical methods can be ap-

plied. With a sufficiently rich embedding, this might catch a non-negligible amount of out-of-

distribution samples. A detailed example will be given in Section 6.1. As already explained, this

might however suffer from human bias, and for the same reason is constrained to a reasonably

small number of dimensions.
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Figure 5.1: Dimensionality reduction of the MNIST-784 dataset [Lec+98], comprised of 8-bit

grayscale 28 × 28 images, from left to right: 2-dimensional PCA, 3-dimensional PCA, and

2-dimensional t-SNE [MH08; Maa09]. Each color represent one of the digits from 0 to 9.

Note that the parameters of the t-SNE embedding are learnt through gradient descent, while

PCA follows from matrix decompositions.

More advanced techniques More generally, there is a large body of work on dimensionality

reduction techniques (see [ESL, 13.4.2, 14] for an introduction), whose goal is to find embed-

dings as in Equation (5.1) that preserve the main properties (depending on the context) of the

data in arbitrary lower dimensions. For example:

• A popular method is Principal Component Analysis (PCA) [ESL, 14.5], which can be seen

as fitting to the data an ellipsoid of the requested (lower) dimension. See Figure 5.1 for

an example. An obvious issue is the linearity and globality of the embedding.

• Autoencoders (see [GBC16, Chapter 14] for an overview) are unsupervised neural net-

works aimed exactly at learning low-dimensional representation. Their design can be very

intuitive, with an encoder network, reducing the dimension until a bottleneck layer pro-

viding the representation, followed by a decoder network that tries to recover the original

image from the representation (see Figure 5.2).

A common issue for these, due to the complexity of the embedding, is that it might be difficult

to identify both

• The image F = π(X ) of the embedding inside the lower-dimensional space Rp (which is

well-defined when using explicit parameters);

• The induced probability distribution on π(X ).

In particular, the embedding might lose transparency/interpretability in the sense of Chapter 4.

However, unlike hand-crafted approaches, it is generally possible to quantify how well the

embedding expresses the data (e.g. from a test dataset; see Figures 5.1 and 5.2), therefore

the likelihood that the converse of the first implication in Equation (5.2) holds. For example,

one might look at the reprojection error of an autoencoder on (a subset of) the test dataset.

Ensembling was also discussed in [CoDANN20, 6.3.3], drawing a parallel with multiple version

dissimilarity: it is likely that different models will behave differently on out-of-distribution data.

Ultimately, the level of confidence at which one needs to verify the conditions recalled at the

beginning of the chapter will depend on the safety argument of the whole system, in addition

to whether it is applied during development, for operations, or other phases of the system

lifecycle.

See also Section 5.4 on the definition and calibration of “uncertainty”.
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Figure 5.2: Generic architecture for an autoencoder. The left-hand side is the encoder, the

right-hand side the decoder, while the middle part (often called “bottleneck”) provides the

low(er)-dimensional encoding. The network is trained by minimizing the difference between

the input and its reconstruction.

5.1.2 Image conditions and quality metrics

Explicit operating parameters can be categorized along two directions, characterizing in further

details:

• The external environment (distribution of targets, location. . . );

• The input received by the visual sensors.

The former is usually more classical, as it readily relates to the system requirements/ConOps,

so this section focuses on the latter.

Image quality metrics Given a vision-based system (classical or machine learned), it is impor-

tant to carefully characterize the algorithms’ behavior and limitations with respect to properties

of the input images. Changes in the operating environment (lighting, position of sun, visibility)

would directly influence what the visual sensor receives, and in turn, changes in the image

conditions would influence the performance and behavior of the algorithm. For example, this

was one of the issues noted by Google and their partners in the real-world deployment of their

diabetic retinopathy diagnostic system [Bee+20].

In the context of learning assurance, this simply means:

• Understanding which image parameters might vary in the images received by the sensors

(i.e. in the operating space X );

• Defining which ranges are expected and acceptable, and under which distribution;

• Understanding how they might impact the intended function;

• Adding these as explicit operating parameters, and ensure that the design datasets (train-

ing/validation/testing) cover them under the adequate distribution.

Operating parameters that focus on the image itself rather than what it represents will be

named Image Quality Metrics (IQM). These will generally apply to most vision-based systems.

Normalization/standardization It is often possible to normalize/standardize the input to en-

sure that an image parameter falls within a range (or is even equal to a fixed value), but it

should not be forgotten that the normalized out-of-range images will still have a different nor-

malization: all that happened is a switch to another (perhaps currently untracked) parameter.
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For example, a very dark image can be normalized to have a certain brightness, but the result-

ing image might contain less or different information than an image captured with the target

brightness.

Examples The following provides various examples of IQMs which can be computed per image

frame.

• Brightness: average value of channel (V in HSV spectrum of the image) intensity. The

value should be within a range; too low/high indicates under-/overexposure.

• Contrast: standard deviation of pixel intensities of the gray-scaled image. The value

should be within a range; too low may indicate under-/overexposure.

• Entropy: measured as the amount of randomness or infrequent pixel values found in the

gray-scaled image. It is indicative of the presence of rich texture in the image.

These metrics can also be computed locally (dividing the image into several parts and computing

metrics on each). This is for example appropriate for the visual traffic detection use case from

Chapter 2, where detections happen on (a priori unknown) local parts of the input image.

5.2 Assurance level of the neural network component

Some approaches to provide runtime assurance on complex systems such as neural networks

have put the focus on runtime monitoring rather than the system itself. In other words, a lower

criticality is set on the complex system (that might even be seen as a “black box”), with the

monitor supposed to bring runtime assurance.

This section discusses possible issues with this methodology, as well as the criticalities to assign

to neural networks (possibly integrated with tracking/filtering) and external monitors.

5.2.1 Runtime monitoring for runtime assurance

The most prominent example of this approach is [ASTM F3269-17] Standard Practice for

Methods to Safely Bound Flight Behavior of Unmanned Aircraft Systems Containing Complex

Functions (not recognized by EASA as an Acceptable Mean of Compliance (AMC)), which

proposes an architecture where:

• a “complex function” for vehicle control is monitored by

• a Safety Monitor which can operate

• a Runtime Assurance (RTA) switch to put

• an alternate Recovery Control Function (RCF) in control to restore an appropriate level

of safety.

If the Monitor, Switch and alternative Recovery Control Function are “pedigreed”, this might

allow a “non-pedigreed” complex function to be sufficiently bounded.

This is similar to the Doer/Checker architecture described in [KKB19].

Examples The ASTM standard further describes in an appendix an application to the case

where the non-pedigreed complex function is, in fact, a human pilot, and the monitor, switch

and recovery system prevents flight into terrain.
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A more relevant example of this architecture was recently described in [Cof+20], for an auto-

mated taxiing system following a runway centerline. The complex system at hand is a neural

network identifying the centerline, and the monitor can stop the aircraft if:

• GPS and inertial navigation detect the aircraft to go too far outside of the safety margins;

• A classical computer vision algorithm identifying the centerline disagrees significantly with

the neural network;

• A variational autoencoder (see Section 5.1.1) detects the input images to be out-of-

distribution. From [Cof+20], “It is not a trusted component and is therefore not used

to enforce system safety”.

When such an architecture is possible it can certainly be a valid solution, but some criticism

might be raised at the feasibility of the simple safe and certified recovery system, the feasibility

of a reliable and certifiable monitoring system, and at the assumptions and guarantees of the

resulting composite system.

The Recovery Control Function First, defining the recovery strategy to a safe state may in

fact be the most challenging part of the entire operation.

For a driving car or a taxiing aircraft, braking until standstill is certainly an option that can

be controlled by a relatively simple special purpose system, but standing still may not be the

safest state when on a highway or a runway track.

Beyond the safety risk, such a faulty reaction may have some operational impact on third

parties and a limited acceptance by other users (airlines using the same airport, Air Traffic

Control. . . ).

The Safety Monitor Recognizing unsafe conditions may itself be a task that can only be per-

formed by a system as complex as the one to be monitored, for which establishing “pedigreed

guarantees” is at least as hard. In the examples of runway landing guidance and traffic de-

tection, recognizing runway incursions and traffic belong to the situational awareness sensing

block of the architecture diagram, not to the control part. The ability of a human pilot to

recognize certain unsafe conditions could very well be harder to replicate in a machine than

the control function used for recovery.

The overall system and its safety guarantees Safety is not a property of a sensor, a monitor

or a controller, but of the entire system in its operational conditions in an aircraft in an

environment. The hazards and sources of uncertainty are present at all these levels, and to

assume that the uncertainty can be attributed to a subsystem like a monitor or a controller is

to presuppose a simplified universe of possible engineering problems.

If one takes the view that maintaining a safe state is a control problem [STPA], one can see

that the ASTM proposes a classical control-monitor architecture:

at each instant in time,

when some safety-metric drops below an acceptable threshold,

activate a safety-restoring-function.

This larger controller-plant system, that includes the original controller as a subcomponent, has

to be carefully analyzed for its safety guarantees: complex and unexpected interactions between

the components may very well make the resulting system more complex, harder to prove safe,

and in fact less safe. For example, the switchover function may introduce hard-to-analyze or

unbounded and unexpected behavior1.

1A failing RTA architecture of this nature is what the nuclear disasters at Three Mile Island and Chernobyl

had in common [Per84], triggered by maintenance and safety testing procedures.
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Conclusion Installing a safety monitoring system and fallback controls can not be a general

alternative to providing safety guarantees on a system or subsystem that has a sufficiently

complex task. In short, if a monitoring system able to detect faults becomes sufficiently

complex, a more reliable system can likely be built by putting the complexity directly into the

monitored system. Moreover, even if the safety monitor was perfect, this architecture would

provide no guarantees that the complex system performs its function, only that its failures (as

frequent as they are) can be detected.

5.2.2 Proposed architecture and assurance level allocation

Limiting the scope of complex components to the minimum necessary Limiting complex

and hard to guarantee functions to the smallest possible block in the architecture diagram is

good practice.

This is why the examples presented in [CoDANN20] and Chapters 2 and 6 limit the machine

learnt component to single images, deliberately leaving out time dependence, as well as other

dependencies that can be treated with traditional systems. This is opposed to so called “end-

to-end” architectures where a neural network for example directly controls the elevators, rudder

and ailerons given a camera input.

Section 5.3 below will extend the discussions from [CoDANN20, Chapter 9] around the in-

tegration of classical tracking/filtering algorithms to take into account these dependencies,

preventing in particular error rates from accumulating over time.

Learning assurance Learning assurance, as described in [CoDANN20], provides bounds on the

behavior of a machine learning component, so the objective of bounding behavior is already

met within that framework.

The out-of-distribution detection presented in [CoDANN20] and Section 5.1 as an essential

component is in fact a runtime safety monitor, subject to similar statistical analysis as the main

function. Note that this goes beyond the example above from [Cof+20] where the distribution

check is used as a minor part of the monitor.

This link between learning assurance and out-of-distribution detection has also been discussed

in Chapter 4 as part of explainability: the link between the operational and training data provides

the explanation for the system performance.

Assurance level allocation In particular, the joint neural network, tracking/filtering and OOD

monitoring should be assigned a high (relative) assurance level that cannot be reduced by

combining it with a “bounded behaviour” system as described in [ASTM F3269-17].

An example will be given in the setting of the use case in Section 6.3. Future work may

investigate ways of deriving credit from an RTA.

5.3 Integration within classical filtering/tracking

A machine learning model f̂ : X → Y can be seen as a sensor that approximates the true

function f : X → Y .

All sensors, classical ones or machine learning models seen as such, are imperfect and noisy,

and dealing with this is a classical topic in engineering (see e.g. [ISO98-3; TBF05]).
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Typically, sensor inputs can be:

• Filtered, to take into account the state of the system, the time dependencies, and

uncertainties. This can be especially useful when the neural network has no knowledge

of state or previous inputs/outputs, as in the example system studied in this report

(Chapters 2 and 6).

• Fused with other sensors having different types of errors (see e.g. [DO-365B, Appendix

F] for a system fusing radar, ADS-B and AST tracks).

These techniques usually require making and validating assumptions on the sensors, such as

means, covariances, independence of errors, etc. This section discusses these for machine

learning models.

5.3.1 Learning assurance and mean errors

The learning assurance guarantees (see [CoDANN20, Chapter 5]) provide a statement of the

form2

Ex∼X

[

m
(

f (x), f̂ (x)
)]

< Ein(f̂ , D,m) + ε (m ∈M), (5.3)

whereM is the set of metrics of interest. The right-hand side is determined during development

as the performance observed during development plus a summand to account for generalizing

on unseen data (with ε→ 0 as |D| → ∞).

This asserts that the average errors (as measured with the metrics from M) of the “neural

network sensor” are minimal on average. For metrics m that can be written m(x, y) = m̃(x−y)

(e.g. squared residual), then one can write

f (x) = f (̂x) + e(x),

and Equation (5.3) states that Ex∼X [m̃(e)] is bounded by a known small quantity.

Systematic errors This is a guarantee that the model generalizes on unseen data, but one

might need the stronger assumption that this mean is actually zero, i.e. that the model does

not make systematic errors, or to consider higher moments. This is a crucial hypothesis for

the analysis of most filtering or fusing techniques.

This might be difficult to ensure from (5.3), given that the right-hand side will always be strictly

positive. However, the mean being nonzero would imply that the model makes systematic

errors, which would be managed by:

• Correcting the training/training data to prevent these systematic errors. This corresponds

to the epistemic uncertainty discussed in [CoDANN20, Section 6.6.4] (categorized by

Der Kiureghian and Ditlevsen [DD09]);

• If this is not possible, identifying possible subspaces of the input space where the system-

atic errors are made, and mitigating these differently. This corresponds to the aleatory

uncertainty discussed in [CoDANN20, Section 6.6.4].

The assumption that the mean is zero with these conditions can then be statistically tested.

2The conventions from [CoDANN20] are followed. In particular, metrics are of the type “lower is better”.
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5.3.2 Covariances and independence

Considering model outputs over time

f̂ (x0), f̂ (x1), . . . , f̂ (xt), . . . ,

viewing x0, . . . , xt as random variables, an additional assumption required by filtering techniques

is that the errors

e(x0), . . . , e(xt)

are:

• Of known covariances E [e(xt)e(xt)
t ] (assuming zero mean);

• Uncorrelated;

• Uncorrelated with the process noise and the initial state.

There is in general no hard requirement for independence or normality: the Kalman filter is the

optimal filter under the assumption of normality, but is still the best linear estimator (which

might be enough) without this hypothesis, see [Sim06, Chapter 5].

Covariances and independence / types of errors The (un-)correlation of errors in time series

was briefly mentioned in [CoDANN20, Section 9.5]. Assuming that the model has an elevated

error e(xt) on frame xt , one might argue that the likelihood to also have an elevated error on

the next frame xt+1 is either:

1. Not different from the average case, given that xt is close to but different from xt+1.

For example, if xt is an isolated singularity/discontinuity of the model f̂ that produces

an erroneous output, changing a single pixel might be enough to get an adequate result.

In this case, errors between frames should be independent and/or uncorrelated.

2. Higher than the average case, if the model is being operated in a region where less

training data was available or where the learning task is intrinsically harder (e.g. different

behavior of the target function f ).

These cases should be related respectively to the aleatory and epistemic uncertainties men-

tioned above.

In particular, epistemic uncertainties should be reduced as much as possible: [DD09] also

discusses the issues they pose for systems operating over time such as the setting considered

here, as they violate the assumptions above, yielding sequences of heightened errors.

This also means that methods to verify the absence of significant errors of the second case have

to be designed and applied, for example by studying means as in Equation (5.3) over subsets of

the whole space. In other words, given that learning assurance only provides results on average

over the whole space, one wants to ensure that means do not hide weakened performance on

some regions of the operating space. This is often called “bias”, which should not be confused

with the “bias” from the “bias-variance decomposition”, see e.g. [Meh+19].

5.4 Uncertainty estimation and validation

Section 5.3 viewed a machine learning model, approximating a true function that is too com-

plex to implement explicitly, as a sensor. This analogy is appropriate as guarantees on the

performance of a machine learning model will be probabilistic in nature, as with any sensor. In
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other words, “measurements” are guaranteed to be correct on average, but individual ones are

subject to inevitable statistical noise.

The [ISO98-3] standard defines the uncertainty of a measurement as

• “a parameter, associated with the result of a measurement, that characterizes the dis-

persion of the values that could reasonably be attributed to the measurand.”

• “a measure of the possible error in the estimated value of the measurand as provided by

the result of a measurement.”

• “an estimate characterizing the range of values within which the true value of a measurand

lies.”

The two types of uncertainties, aleatory and epistemic, were recalled in Section 5.3. A discus-

sion on detecting and measuring epistemic uncertainty was started in Section 5.1.

The inputs to the model will usually themselves come from “classical” sensors (camera, IMU,

RADAR, etc.), bringing additional possibilities of errors/uncertainties in the system. Figure 5.4

presents two cases where a visual sensor captures aircraft present in the field of view, but the

resulting images might not contain enough information for a detection to achieve the same

precision as in easier cases.

World Sensor

Uncertainty

Model

Uncertainty

f̂ (x)
x ∈ X

Figure 5.3: Uncertainties in sensor and model.

Figure 5.4: Limitations of a visual sensor for object detection: two objects that are hard to

distinguish from the background and/or very distant. A helicopter is present in the center of

the middle image, but is only represented by 1 pixel on a 12-megapixel image. The image on

the right presents an easy case (black helicopter against light background).

This section discusses the meaning of measuring/predicting uncertainty as well as methods

to do so and requirements to set. It would be important to discuss both the frequentist and

Bayesian points of view, but the latter is left for future work. The reader is referred to the

recent survey [Abd+21] (focusing on deep neural networks).
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0.4

0.2

0.0

0.2

0.4

Figure 5.5: Repeated measurement µ̂ of a parameter µ = 0 with their respective confidence

intervals. A confidence level of β would mean that the ratio of intervals intersecting the

horizontal axis µ = 0 would converge to β.

5.4.1 Expressing uncertainties

Uncertainties are usually reported as confidence intervals of the form

µ̂± a or [µ̂− a, µ̂+ b] (a, b > 0),

with µ̂ the estimated value of a target parameter µ. These are usually not absolute statements,

but reported for a confidence level β (e.g. 95% or 99%).

Confidence levels and probability spaces This confidence β is commonly misinterpreted [WL16]

as the probability that the true value µ lies in the confidence interval. Such a statement does

not make sense as µ is (in the frequentist interpretation) fixed: the probability that it belongs

to an interval is either zero or one.

Instead of considering the parameter µ random, the probability space of all measurements is

considered: each measurement M has a confidence interval C(M), and

β = P
(

µ ∈ C(M)
)

.

By the law of large numbers, when performing a large number of measurements, the ratio of

confidence intervals that contain µ will converge to β. See Figure 5.5 for an illustration.

More generally, when discussing uncertainties, it is important to always make the underlying

probability space, or priors in the Bayesian setting, clear.

Relationship with variance Section 5.3.2 discussed the importance of understanding (co)variance

of model errors. This is related to uncertainty and confidence intervals: concentration inequal-

ities such as Chebyshev’s can provide confidence intervals for sample means as a function of

the variance. In the case of a normal distribution with variance σ2, it is well-known that more

than 95% of observations will fall within 2σ of the mean asymptotically.

5.4.2 Measuring/predicting uncertainty

The [ISO98-3] standard distinguishes two ways of measuring uncertainty in measurements:

• Type A: statistical methods on repeated observations;

• Type B: other methods.
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For both, the probability space in which the uncertainties will apply (see Section 5.4.1) needs

to be determined. Once the probabilistic setting is clear, so will be possible means to verify

the chosen technique.

Type A methods Under the analogy of machine learning models as sensors, type A methods

do not make sense on a single input (collected e.g. from a sensor), as the model is assumed

to be deterministic3.

However, it is possible to obtain a meaningful measure of uncertainty around a single input

within the Type A setting of repeated measurements, for example:

• In the case of highly correlated time series inputs (such as images in the use cases from

Chapter 2 and [CoDANN20]), one point of view might be to see successive images as

a repeated measurement. Often, the outputs between successive frames even admit an

explicit transformation (in the example, depending on the relative movement of the two

aircraft). Note that this will also include uncertainty from the sensor (see Figure 5.3).

• Injecting noise into the input, in line with techniques from explainability (Section 4.6.4),

adversarial attacks, or generalization bounds based on weight perturbations (see [Co-

DANN20, 5.3.6]).

• Ensembling, which combines several4 models into one, and therefore performs several

“measurements” for each input. This can help quantify both types of uncertainty as

different models might behave differently on out-of-distribution data, and have different

errors on in-distribution data. See [CoDANN20, 6.3.3] on multiple version dissimilarity.

Type B methods Some type A methods can be seen as type B ones when applied to test

data; other examples of type B methods are:

• Uncertainty as an output of the model itself.

• Analyzing the overall model uncertainty from errors on test data, possibly making and

verifying assumptions on their distribution at the same time. While this uses repeated

measurements, these are of different inputs.

• In simulation, type A methods are easier to apply, as small variations of an image that

leave the output fixed can be easily generated. If the gap between reality and simula-

tion ([CoDANN20, Chapter 7]) is well understood, this information can be used during

operations.

The first method is discussed further in the next section.

5.4.3 Uncertainty as a model output

This section discusses the natural method of trying to predict uncertainties as part of the

model output, meaning this task is learnt as part of the training. This a priori only makes sense

assuming in-distribution data, i.e. assuming that epistemic uncertainty is controlled5.

3On the other hand, for humans tasked to annotate training data, or simply for measured “ground truth”,

it is likely that each measurement will be slightly different. Recall from [CoDANN20, Section 5.2.2] that the

“true function” is only an abstraction, and that measuring/collecting values is tainted by random noise.
4Possibly variants of the same base model, see variational dropout or stochastic ensembles.
5An interesting discussion is present in [Sae00, Section 4] on possible issues in past research.
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# Class probability Predicted class

Background Rotorcraft Fixed-wing

1 0.3 0.3 0.4 Fixed-wing

2 0.1 0.7 0.2 Rotorcraft

3 0.8 0.1 0.1 Background

Table 5.1: Categorical predictions from probability distributions over three classes.

Output types It is useful to distinguish to two general types of outputs of machine learning

models:

• Categorical outputs, where the output is among a fixed finite set, such as the airborne

object category in Section 2.1.3;

• Numerical outputs, where the output is a continuous variable (or considered as such),

such as the bounding box coordinates in Section 2.1.3.

Categorical outputs Categorical outputs are usually implemented with a built-in probabilistic

viewpoint: for each input, a probability distribution over the input classes is computed. This is

often achieved with the softmax function

v ∈ Rn 7→ p = σ(v) ∈ [0, 1]n, pi =
evi

∑n
i=1 e

vi
,

n
∑

i=1

pi = 1

that transforms a real-valued vector into a probability distribution. The output class is selected

as the one having maximum probability.

It is tempting to see the distribution p as a straightforward measure of uncertainty: if the

highest probability is close to 1, the prediction is very confident; if all probabilities are close to

1/n, the prediction is not better than random guessing; two close scores denote uncertainty

between two classes. This is illustrated in Table 5.1.

For this to be valid, following Section 5.4.1, the probabilities produced by the neural network

should satisfy

P
(

Correct prediction | Predicted confidence = p
)

= p,

where “correct prediction” means “predicted confidence of the true class is > 0.5”. This

property is called calibration. By the law of large numbers, p is, in that case, equal to the

asymptotic proportion of correctly classified samples with predicted confidence equal to p. For

example, on a large amount of samples, roughly 30% of those where the neural network outputs

a 70% confidence should be misclassified.

This is true for models such as logistic regression on linearly separable data, but miscalibration

is a known issue for more complex models such as neural networks [NC15; Guo+17]. See

Figure 5.6 for an illustration. Interestingly, [NC15] observed in 2005 that neural networks

tended to be well-calibrated, but [Guo+17] noted that this was not true anymore with recent

training and regularization techniques as well as increased model capacity.

Therefore, the calibration of confidences should always be carefully analyzed, in particular when

it will be used during filtering (Section 5.3).

There exist multiple techniques (see e.g. [NC15; Guo+17]) to recalibrate models post-training

while conserving prediction quality. An effective but simple method, already mentioned in [Co-

DANN20], is Platt scaling, which simply rescales probabilities with a linear model on the vali-

dation set.
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Figure 5.6: Calibration curve for binary classification models (logistic, support vector classifier,

random forest) on a synthetic dataset (105 samples, 20 dimensions, 104 samples used for

training). The x-axis contains predicted confidences, while the y -axis displays the proportion

of samples correctly classified. A perfectly calibrated classifier should fit the diagonal. Adapted

from the documentation of [Ped+11].

Numerical outputs Unlike categorical outputs, numerical ones do not usually have a straight-

forward interpretation of confidence.

Assuming “perfect training” (global minimum reached and adequate model capacity, see [Sae00]),

using the natural mean squared error as a loss function will result in predicting the conditional

mean of the output given the input. It is therefore natural to attempt to predict other statistics.

A well-known example is the method of quantile regression, where the loss is modified to

yield a model that predicts conditional quantiles: see [Sae00] for a proof in “perfect training”

conditions.

A similar recent example can be found in Pearce et al. [Pea+18], which, building on previous

work, provides a method to produce prediction intervals for deep neural networks through a

specific loss function (and ensembling to take epistemic uncertainty into account).

The potential issues noted above for categorical outputs carry to numerical ones. It is important

to carefully verify techniques, given that perfect training conditions required for theoretical

results usually do not hold. Experimental verification frameworks are present in most relevant

publications (see e.g. [Pea+18, Section 6]).

5.4.4 Conclusion

This section showed that care had to be taken in the definition of uncertainties (probability

spaces, epistemic or aleatory), and surveyed common issues and techniques. One aspect

that should be kept in mind is that a probabilistic interpretation (such as “probabilities” in

classification, even when minimizing a cross-entropy) does not necessarily satisfy probabilistic

properties (e.g. calibration).

The reader is referred to the literature and surveys such as [Abd+21] for more details on

specific techniques, in particular on the Bayesian point of view.
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Chapter 6

Detailed analysis of the Visual Traf-
fic Detection use case

This chapter returns to the use case described in Chapter 2 and applies the considerations

from Chapters 3 to 5. While [CoDANN20, Chapter 10] examined the overall W-shaped pro-

cess, this section focuses on runtime monitoring (Section 6.1), neural network/tracking inte-

gration (Sections 6.2 and 6.4), full system integration (Sections 6.3 and 6.4) and explainability

(Section 6.5).

6.1 Runtime monitoring and out-of-distribution detection

Sections 4.8.1, 5.1 and 5.2 emphasized the need to ensure that the inputs to the system

match the probability space specified by requirements. Not doing so would render impossible

to guarantee performance on unseen data for a system with a machine-learnt component.

For the visual detection use case, several distribution monitors can be envisioned.

Explicit operating parameters From Table 2.2, examples are altitude, speed, time of day,

location, etc.

As they are usually low-dimensional, classical goodness-of-fit testing methods can be used to

ensure that distributions match the expected ones.

Image quality metrics Described in Section 5.1.2, these are based on the input received by

the visual sensors, and are particular examples of explicit operating parameters. They might

be directly included in the system requirements or not.

The ability to visually detect airborne objects from images will depend on

• How much the objects stand out from the background (e.g. black helicopter on black

background is less distinguishable than a black helicopter against a bright background);

• How much information is present on the object itself (e.g. a camera blinded by the sun

will “hide” information about the object).

Figure 6.1 presents an easy and a challenging example (with the system studied detecting the

aircraft in both cases); see also Figure 5.4.

Some obvious metrics are brightness, contrast, etc., computed locally (on parts of the images)

or globally (on the whole image). The Grey Level Co-occurence Matrix (GLCM) [HSD73] can

provide additional metrics such as uniformity, homogeneity and correlation.
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(a) High contrast and brightness. (b) Low contrast and brightness.

Figure 6.1: Easy and hard example for visual traffic detection, characterised by brightness and

contrast.

Computing metrics locally is particularly relevant for an object detection system, as this might

provide insight about regions of the image where the system might not be able to detect a

target, even if the overall image metrics are within adequate ranges.

Complex distribution discriminator As discussed in Section 5.1, explicit operating parameters

and image quality metrics might be too shallow to characterize the expected input space

distribution and detect deviations from it during operations.

Section 5.1.1 presented several techniques based on dimensionality reduction. The framework

presented in [CoDANN20, Section 6.2.8] provides requirements and means of verification that

are agnostic to the exact techniques used.

A careful analysis should be carried out to quantify the residual probability of out-of-distribution

data (where no generalization guarantees can be given) not being detected by the out-of-

distribution detection system.

Section 4.8.1 also showed how explainability techniques provide means to ensure that the

operating space is correctly identified.

6.2 Tracking/neural network integration

This section applies the considerations from Section 5.3 to the post-processing described in

Section 2.1.4. The discussions therein will also be an input to the functional hazard assess-

ment in Section 6.4. In particular, failure conditions and fault trees must carefully take into

account the interactions between the neural network and the post-processing/tracking/filtering

component. This might include the time dimension given that post-processing is important to

prevent a small error rate from exponentially increasing over time.

[CoDANN20, Chapter 9] examined how learning assurance and filtering can be combined to

obtain performance guarantees on a post-processed neural network output. The focus here will

therefore be put on the analysis of the tracking component, assuming that probabilistic failure

rates on the neural network component are known.

This section has been removed in the public version due to confidentiality reasons. Interested

parties are welcome to contact ipc-feedback@daedalean.ai.
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6.3 Full system integration

Within this section the integration of the neural network within the whole system is explored

further in order to highlight any necessary mechanisms to support the desired safety case.

This section has been removed in the public version due to confidentiality reasons. Interested

parties are welcome to contact ipc-feedback@daedalean.ai.

6.4 Functional Hazard Assessment (FHA)

In the ConOps examples, for both identified use cases, the following functional decomposition

has been identified:

• F1: To detect aircraft in the surrounding airspace.

• F2: To provide track information on detected aircraft in the surrounding airspace.

• F3: To monitor the system.

• F4: To interface with the aircraft systems.

• F5: To predict potential collisions with other aircraft and respond to traffic alerts to

avoid collisions.

6.4.1 Functional allocation

This section has been removed in the public version due to confidentiality reasons. Interested

parties are welcome to contact ipc-feedback@daedalean.ai.

6.4.2 Functional analysis

Failure conditions list

See the following pages.
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ID
Function

description
Failure condition title

Phase of

operation

Effect of the Failure

on the Aircraft,

Crew and Occupants

FC classi-

fication
Rationale for classification Notes (assumptions)

FC1-1

F1 + F2

(traffic

detection and

tracking)

Total loss of function,

indicated to the crew

(advisory system): system is

unavailable and crew is

warned by the system

In Flight

Alert and associated

procedure are used to

mitigate FC

MIN

Classified Minor due to the

impact on safety

margin/crew workload.

Spurious alerting falls under

CS29/25.1322,

CS23/VTOL requirements

related to alert (see

AMC/VTOL MOC)

Assumption #1: Flight crew,

alerted to system in opera-

tion, will be ready to visually

acquire potential hazardous

traffic.

Assumption #2: Alert and

AFM procedure will be devel-

oped to cover this case.

FC1-2-1

F1, F2 + F3

(system

monitor)

Total loss of function, not

indicated to the flight crew

(advisory system): system is

unavailable and crew is not

warned by the system,

without threat

In Flight

Flight crew may

notice system

malfunction in due

time and recover

MAJ

Classified Major due to the

impact on safety

margin/crew workload. Per

the ConOps, ATC may not

be available to detect

potential collision.

Assumption #3: Flight crew

do not reduce their alertness

to potential hazardous traf-

fic, despite the presence of

this system.

Note this FC also cover in-

correct inhibition above 300

ft (e.g. system always in-

hibited). No dedicated en-

try has been created for an

incorrect inhibition as the ef-

fect are similar to this partic-

ular FC. Incorrect inhibition

is thus to be considered in-

cluded in this FC.

FC1-2-2 F1, F2 + F3

Total loss of function, not

indicated to the flight crew

(advisory system): system is

unavailable and crew is not

warned by the system, with

threat

In Flight

Flight crew may

notice system

malfunction in due

time and recover

HAZ

Classified Hazardous due to

potential that threat is not

detected by crew or other

system in due time. Per the

ConOps, ATC may not be

available to detect potential

collision. Classification

assumes no credit from ATC

As per FC1-2-1

FC1-3 F1 + F2

Erroneous guidance but

detected by the crew:

system is not providing

proper guidance and crew is

warned by the system

In Flight

Flight crew may

identify that system

has failed in due time

and recover as per

AFM procedure

MIN As per FC1-1 As per FC1-1

FC1-4-1 F1, F2 + F3

Erroneous guidance, but

not detected by the crew

(Misleading : system is not

providing proper guidance

and crew is not warned by

the system, without threat

In Flight

Flight crew may

notice system

malfunction in due

time and recover

MAJ As per FC1-2-1 As per FC1-2-1
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Function

description
Failure condition title

Phase of

operation

Effect of the Failure

on the Aircraft,

Crew and Occupants

FC classi-

fication
Rationale for classification Notes (assumptions)

FC1-4-2 F1, F2 + F3

Erroneous guidance, but

not detected by the crew

(Misleading : system is not

providing proper guidance

and crew is not warned by

the system, with threat

In Flight

Flight crew may

notice system

malfunction in due

time and recover

HAZ As per FC1-2-2 As per FC1-2-1

FC1-5
F4 (interface

with aircraft)

Loss of inhibition below 300

ft : The system keeps

running below 300 ft

Take Off,

Initial

Climb,

Approach,

Landing

Spurious alerts due

to ground traffic may

occur during take-off

or landing

procedures.

MAJ

Classified Major due to

increased crew workload, due

to spurious alerting, during

critical phases of flight.

FC1-6-1 F4
Loss of the video link to the

display
In Flight

Flight crew is unable

to acquire/confirm

the target through

the avionics display

MIN
Classified Minor due to slight

increase in crew workload.

Assumption #4: Video im-

age is discretionary informa-

tion and does not effect abil-

ity of flight crew to make

avoidance action decisions.

FC1-6-2 F1, F2 + F3
Misleading video on the

display
In Flight

Flight crew is unable

to acquire/confirm

the target through

the avionics display

MIN
Classified Minor due to slight

increase in crew workload.

As per FC1-6-1

The video does not corre-

spond to the detected target:

e.g. there is no intruder dis-

played because the system is

not sending the right part of

the image.

FC1-7-1 F4
ACAS Data is not displayed

(Loss of data)
In Flight

Flight crew is not

alerted to

uncooperative visible

traffic.

MAJ

Classified Major due to the

impact on safety

margin/crew workload. Per

the ConOps, ATC may not

be available to detect

potential collision.

As per FC1-2-1

FC1-7-2 F1, F2 + F3
ACAS Data is incorrectly

displayed
In Flight

Flight crew is given

misleading alerts to

uncooperative visible

traffic.

MAJ

Classified Major due to the

impact on safety

margin/crew workload. Per

the ConOps, ATC may not

be available to detect

potential collision.

As per FC1-2-1

FC2-1 F1 + F2

Loss of traffic alerts on an

autonomous system,

indicated to an upper level

system without threat

In Flight

For fully autonomous

system, having alerts

/ Flight deck effect

in such a case are not

necessarily relevant

MIN

Classified Minor due to

slight decrease in safety

margin (host aircraft having

to take action as a result of

system failure).

Assumption #5: Once sys-

tem failure reported to host

aircraft appropriate action is

taken.
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Failure condition title

Phase of

operation

Effect of the Failure

on the Aircraft,

Crew and Occupants

FC classi-

fication
Rationale for classification Notes (assumptions)

FC2-2 F1 + F2

Loss of traffic alerts on an

autonomous system,

indicated to an upper level

system with threat

In Flight

For fully autonomous

system, having alerts

/ Flight deck effect

in such a case are not

necessarily relevant

HAZ

Classified Hazardous due to

potential that threat is not

detected by other systems in

due time. Per the ConOps,

ATC may not be available to

detect potential collision.

Classification assumes no

credit from ATC.

As per FC2-1

FC2-3 F1, F2 + F3

Loss of traffic alerts on an

autonomous system, not

indicated to an upper level

system without threat

In Flight

For fully autonomous

system, having alerts

/ Flight deck effect

in such a case are not

necessarily relevant

HAZ

Classified Hazardous based

on the reduction of safety

margin considering that

system is one external event

(external traffic on collision

course) away from a CAT

event

FC2-4 F1, F2 + F3

Loss of traffic alerts on an

autonomous system, not

indicated to an upper level

system with threat

In Flight

For fully autonomous

system, having alerts

/ Flight deck effect

in such a case are not

necessarily relevant

CAT

Assumption #6: No reliance

on other A/C avoidance sys-

tem as mitigation (non co-

operative system submitted

so similar operating condition

assumed), or ATC to ensure

separation.

FC2-5 F1, F2 + F3

Erroneous traffic detection

but detected by an upper

level system/the system

itself on an autonomous

system

In Flight

For fully autonomous

system, having alerts

/ Flight deck effect

in such a case are not

necessarily relevant

HAZ

Classified Hazardous based

on the reduction of safety

margin considering that

system is one external event

(external traffic on collision

course) away from a CAT

event

FC2-6 F1, F2 + F3

Misleading traffic detection

traffic on an autonomous

system

All

For fully autonomous

system, having alerts

/ Flight deck effect

in such a case are not

necessarily relevant

CAT

This could result in inappro-

priate pitch down command

close to ground

Table 6.1: Failure conditions. FC1 rows are related to use case 1 (pilot advisory), FC2 rows are related to use case 2 (full autonomy). NOTE: Supporting

material and Verification methods for each Failure Condition are not discussed in the scope of the IPC.

• NSE = No Safety Effect, as defined in applicable guidance.

• MIN = Minor Failure condition as defined in applicable guidance.

• MAJ = Major Failure condition as defined in applicable guidance.

• HAZ = Hazardous Failure condition as defined in applicable guidance.

• CAT = Catastrophic Failure condition as defined in applicable guidance.

For example, an applicable guidance for VTOL is AMC VTOL.2510.
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6.4.3 Fault Tree Analysis

This section has been removed in the public version due to confidentiality reasons. Interested

parties are welcome to contact ipc-feedback@daedalean.ai.

6.4.4 Development Assurance Level Assignment

This section has been removed in the public version due to confidentiality reasons. Interested

parties are welcome to contact ipc-feedback@daedalean.ai.

6.5 Explainability

This section finally looks at explainability for the use case, in the context of Chapter 4.

Focus on explainability for detection The focus will be put on the traffic detection part, and

not on the avoidance system where the former might be integrated in.

The avoidance algorithm is usually built on classical software for which [ED-12C/DO-178C]

applies. It can be thought of as a set of rules that trigger maneuvers depending on the

relative position and movement of potential obstacles. However, this does not mean that

explainability does not need to be considered for this part, as modern systems might make

use of optimization algorithms generating complex lookup tables, not dissimilar to how neural

networks work (see [KHC12] for an overview; also [JKO19]). Moreover, this might move the

level from “aid to decision” to “decision-making”.

Components of the detection system Section 2.1 explained that the visual traffic detection

system is composed of:

• A neural network producing a set of detections (essentially bounding boxes with confi-

dences) on each frame;

• A tracking algorithm creating “tracks” from the single detections. Track points might

be composed of detections from the neural network, or extrapolated from previous de-

tections.

Categorization As in Section 4.2.1, for explanations one should distinguish the:

• Object: system or output;

• Recipient: regulator, system designer, pilot/operator, or investigator.

System-level explanations through generalization These will not be discussed further here

as they were extensively discussed in [CoDANN20], and have been the object of Sections 6.2

and 6.4. The analysis should provide detailed probability distributions for the different cases

where the model might fail to output a target (false negatives) or produce spurious detections

(false positives). These distributions can be fed into the tracking algorithm and the overall

safety analysis.

Requirements for explainability Following Section 4.8, the following sections discuss addi-

tional activities: output-level explanations and strengthening the data-learning assurance link

(Section 4.8.1), starting with the first given that it can be used for the second too.
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Figure 6.2: Screenshot from an internal demonstration user interface, providing a zoomed-in

inlet of a detection, allowing confirmation.

6.5.1 Output-level/local explanations

For simplicity, one might view the detection component (neural network, before the tracking

component) as having two states (locally on the input image, e.g. by splitting it into a grid):

1. Object detected, with a given class and confidence;

2. No object detected, with a given confidence.

It is important to realize that many methods focus on the first case (analyzing a detection),

while in the application considered, not detecting an actual target might be a more critical failure

than a false positive (e.g. might lead to a collision). One might even argue that understanding

why the system does not detect an object is a harder problem than explaining a detection:

while a zoomed-in picture of an aircraft is a clear proof of correctness (see Figure 6.2), it is

harder to provide a meaningful and transparent justification for the absence of a detection.

To be able to put forward requirements, it is helpful to distinguish further between true/false

positives/negatives (see Table 6.2).

Object present No object

Detection True positive False positive

No detection False negative True negative

Table 6.2: Reminder about true/false positives/negatives.

Providing local explanations for detections There are two subcases to consider, with the

following main objectives:

• True positives: confirm that the detection was mostly triggered by the object itself, and

not by its surroundings (see also the discussion in Section 4.8.1).

• False positives: understand which parts of the input image triggered a detection and

why; distinguish between systematic errors (e.g. cars always mistaken for aircraft) and

spurious ones.
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Activations visualization (directly or in the input space, see Sections 4.6.2 and 4.6.3) and

saliency maps (Section 4.6.4) would provide useful information towards both objectives. Fig-

ures 4.5 and 4.6 provided examples within the use case. See also [Yos+15] for a real-time

visualization framework.

In the case of false positives, activation visualization also provides a way to generate inputs

where the state of the model (e.g. its activations) is similar to the current one. This might

allow detecting systematic problems or provide evidence against these. Alternatively, one might

also proceed as in Section 4.5.3 to obtain inputs from the training/validation/testing datasets.

This can allow to make the “systematic vs. spurious” distinction. For example, in the context

of Figure 4.10, this could have helped to understand why traffic cones are consistently detected

as helicopters.

Regarding saliency maps, the concerns from [Ade+18] should be kept in mind, and clear re-

quirements should be imposed before choosing a specific technique. As in [Ade+18], one might

ask in particular that the saliency maps:

1. Depend on the models: the saliency maps of untrained models should be qualitatively

and quantitatively different (e.g. close to random noise) than the ones from the trained

model.

2. Depend on the data: the saliency maps of untrained models should be qualitatively and

quantitatively different from the ones from the trained model when data is randomized,

to verify that the explanation actually rely on the data/label relationship.

3. Do not make use (implicitly or explicitly) of the ground truth.

4. Have adequate properties on the training/validation/verification and/or (part of) the

training set (e.g. they are maximal around the objects and minimal else where, and

possibly their values are proportional to the confidences).

Providing local explanations for non-detection The subcases with their objectives are:

• False negatives: understand why the object was not detected.

• True negatives. This is more delicate, since this is the double negative (no object/no

detection) case. Two objectives could be to:

– Show in which parts of the images the detection confidence was highest (albeit still

below the detection threshold).

– As above, show inputs where the state of the model (e.g. its activations) is similar

to the current one, and confirm that these also do not contain detections.

As above, activations visualization (Sections 4.6.2 and 4.6.3) and saliency maps (Section 4.6.4)

can be useful tools towards these objectives.

Displaying detection confidences over the image can be done using only the system outputs

(Section 2.1.1), recalling that these are required to be calibrated (see Section 5.4).

Explanations for pilots/operators and HMI In this context, the goal is to give additional

insights about the system outputs to help in decision-making, e.g. how much trust to put in

the current output or how to cross-check it.

Possibilities were already mentioned in Sections 2.1.1 and 2.3.2 (system outputs provided along

tracks and their visualization). For example:

• A zoomed-in extract of the image with a target is a clear proof of a correct detection

(see Figure 6.2);
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• The display of track points as extrapolated or detected with their confidences (e.g. using

a color coding) provides more context.

Human factors aspects have been discussed as part of this project, but are out of scope for

this report. See also [EAS21, Section 4.5].

6.5.2 Strengthening the data–learning assurance link (system level)

Section 4.8.1 already contained an outline of possible techniques as part of the Independent

data and learning verification step of the W-shaped process.

Good candidates for the target of the maximally activating inputs (Section 4.5.3) and generative

methods (Section 4.5.2) are the confidences:

• At a given location;

• For a given object class;

• That there is an object in the image;

• etc.

Figures 4.1 to 4.4 provided examples in the context of the use case.
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Chapter 7

Conclusion

Building on the first EASA/Daedalean Innovation Partnership Contract (IPC) and the resulting

report [CoDANN20], this second project matured the Learning assurance and Trustworthiness

analysis EASA AI trustworthiness building-blocks [EAS20], in addition to introducing the Ex-

plainability block.

Figure 7.1: Trustworthy AI building-blocks from [EAS20, Figure 5].

Learning/inference environments and model implementation While [CoDANN20] focused

on more theoretical aspects of learning assurance, this report pushed the discussion to tak-

ing into account the software/hardware platforms implementing neural networks and related

tools in the development and operational environments. Chapter 3 surveyed possible platforms,

particularities of the learning and inference environments, as well as means to provide perfor-

mance guarantees for the end system despite the major changes that might take place during

the development cycle, and the complexity of usual training environments.

Explainability Explainability is a recurrent topic for artificial intelligence in safety-critical sys-

tems, and Chapter 4 provided a survey of definitions, techniques, and working groups. As

there exist many methods, whose contributions towards providing additional data are some-

times disputed, it is important to identify what gaps might exist in learning assurance, and what

requirements should be put on mitigations. In line with [EAS21], the report identified two main

objectives: strengthening the learning assurance–data link, and human-machine interaction.

Safety assessment Regarding the topic of safety assessment, Chapter 5 developed topics

from [CoDANN20]: out-of-distribution detection, integration with classical filtering/tracking

to handle time dependencies, as well as uncertainties estimation/validation and assurance level

assignments for neural network components.
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Use case As in [CoDANN20], a practical application was analyzed, corresponding to Daedalean’s

visual traffic detection product. Chapter 2 presented this system within the scope of two op-

erational concepts (pilot advisory and full autonomy), while Chapter 6 illustrated the concepts

developed in the previous chapters on this use case, culminating in a safety assessment of the

full detect-and-avoid system.

Next steps / future work

With [CoDANN20] and the present project, the full W-shaped development cycle for learning

assurance from [CoDANN20] has been investigated.

Requirements allocated to ML
component management

ML requirements
verification

(Sub)system
requirements & design

Independent data
and learning verification

Data
management

Learning process
management

Model
implementation

Learning process
verification

Model
training

Inference model
verification & integration

(Sub)system
requirements verification

Figure 7.2: W-shaped development cycle for Learning assurance from [CoDANN20].

The two EASA/Daedalean IPC projects have been used as inputs by the EASA AI project team

when preparing EASA’s Level 1 Guidance [EAS21].

The visual landing application from [CoDANN20] is integrated as a use case in the first draft

of the document, and a future update might include the visual traffic detection system studied

in this second project.

Some of the topics that have not yet been addressed are:

• Post type certificate changes (e.g. model retraining);

• Proportionality;

• Variants of the non-adaptive supervised learning setting considered throughout. Although

this setting covers a large number of uses cases, future applications might require adaptive

learning, recurrent neural networks, unsupervised learning, etc.

Although it is highly desirable to investigate these aspects in the near future to streamline

upcoming certification applications, the current state of the Level 1 Guidance [EAS21] and the

flexibility built into the certification process enable the first applications to be submitted.

EASA’s roadmap [EAS20] foresees to tackle these topics in the near future. The research

community, industry and standardization working groups also have a crucial role to play in

these areas. To address these challenges, EASA will continue to support and even expand its

collaborations and partnerships with the AI community in the coming months and years.

EASA Innovation Network – IPC.0007

TE.GEN.00400-006 © European Union Aviation Safety Agency. All rights reserved. ISO9001 Certified.

Proprietary document. Copies are not controlled.

Confirm revision status through the EASA-Internet/Intranet.



An agency of the
European Union

References

[Abd+21] Moloud Abdar et al. A Review of Uncertainty Quantification in Deep

Learning: Techniques, Applications and Challenges. Preprint. 2021.

URL: https://arxiv.org/abs/2103.13630.

[Ade+18] Julius Adebayo et al. “Sanity Checks for Saliency Maps”. In: NIPS’18.
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